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ABSTRACT 

INTERACTIONS OF ETHANOL AND METHADONE 

Vijay Aggarwal, Ph.D. 

Medical College of Virginia - Virginia Commonwealth University, 1977. 

Major Professor: Dr. R. J. Bath 

The effects of ethanol administration on the antinociceptive activ-

• ity, lethal properties and brain concentration of methadone, were inves­

tigated. The effect of ethanol on the antinociceptive activity of metha­

done was assessed by the hot-plate and tail-flick tests. Concentrations 

of methadone in the brain were detennined by the use of 3H-methadone as 

well as by gas liquid chromatographic analysis. The study showed that 

moderate doses of ethanol did not alter tail-flick or hot-plate response 

by themselves. However, when combined with methadone, ethanol produced 

a significant increase in the antinociceptive effectiveness of methadone 

as measured by both a decrease in the ED50 of methadone and by an in­

creased intensity and prolonged duration of methadone antinociception. 

Ethanol increased the antinociceptive activity of methadone in both naive 

and methadone-tolerant mice. This increased activity was not due to 

simple addition of subthreshold effects of ethanol nor was it due to an 

ethanol-mediated increase in whole brain·concentrations of methadone. It 

is hypothesized that the increased antinooiceptive activity was the re­

sult of an ethanol-mediated increase in central nervous system sensitiv� 

ity to the antinociceptive activity of methadone. 

1 
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Ethanol pretreatment produced significantly 1 ower brain concentra­

tions of methadone compared to controls when methadone was administered 

subcutaneously. When both drugs were administered orally, ethanol ad­

ministration resulted in brain concentrations of methadone initially less 

than control and at later times greater than control. In both ethanol 

and water-pretreated mice there was an excellent correlation between the 

whole brain concentration of methadone and antinociceptive effect, but 

the anti noci cepti ve effect at any brain concentration of methadone was 

greater in ethanol-pretreated mice. Although ethanol produced signifi­

cant alterations in the brain concentration of methadone, the brain con­

centration of ethanol was generally not altered by methadone administra­

tion. Investigations of the excretion of methadone and its metabolites 

and the half-life of methadone in the brain failed to reveal any signif­

icant ethanol-induced alterations. 

A dose of ethanol which increased the antinociceptive activity of 

methadone did not alter the oral or subcutaneous LD50 of methadone, al­

though mice that died as a result of ethanol and methadone administra­

tion died at lower whole brain concentrations of methadone than those 

that died as a result of methadone alone. The LD50 of ethanol was sig­

nificantly decreased in mice maintained on a methadone dose of 100 mg/ 

kg/day. 

2 
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1 

INTRODUCTION 

A) Methadone 

Methadone exhibits a spectrum of pharmacological effects very 

similar to that of morphine (28) in that both drugs produce analgesia, 

respiratory depression and hypothermia. Soon after its discovery it was 

known that methadone could substitute for morphine in addicts and that 

similar to morphine, continued use of methadone produces tolerance and 

physical addiction in man (74), although advantage of this observation was 

not undertaken on a large scale until recently. 

Like other narcotics, the analgesic effect of methadone is stereo­

selective. The }_-isomer is approximately 20 times as effective· an 

analgesic as the i-isomer following·subcutaneous administration (146). 

The affinity of }_-methadone for opiate receptors in brain homogenates is 

approximately 10 times that of the .9..-isomer but only one-fourth that of 

morphine (119). Although intrinsically less effective than morphine, the 

analgesic activity of methadone is enhanced by its high lipid solubility 

as evidenced by an oil/water distribution coefficient almost 1,000 times 

that of most other narcotics (80). This high lipid solubility accounts 

for two important properties of methadone. First, as shown by bolus 

injection of labeled drugs into the common carotid of the rat, the pene­

tration of methadone through the blood-brain barrier is much greater than 

morphine and is almost as great as the uptake of heroin (115). In addi­

tion, methadone is very effective when given orally as evidenced by the 

fact that the ED50 when given orally is only 8.5 times the ED50 when 

given subcutaneously (146). 
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The structures of known metabolites of methadone in humans and rats 

are presented in figure 1. The major metabolic pathway for methadone 

is N-demethylation and subsequent non-enzymatic cyclization to 2-ethyl­

idene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and then further 

N-demethylation to 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP) 

(124). Additional metabolites such as methadol (I), N-desmethyl metha­

dol (II), l,5-dimethyl-3,3-diphenyl-2-pyrrolidone (IV) as well as the 

conjugated hydroxy derivatives of methadone (VI), EDDP and EMDP have been 

isolated from human urine by various workers, most recently by Anggard 

et tl· (5). Beckett (17) also has proposed the formation of methadone 

N-oxide (V), although other workers have not been able to substantiate 

this finding. The only metabolites which possess antinociceptive 

activity are the methadol and N-desmethylmethadol derived from Q_-metha­

done. The corresponding metabolites of 1.-methadone are almost inactive 

as analgesics (152). 

Misra and Mule (107) have proposed that 1.-methadone but not Q_­

methadone forms a methadone-derived compound which is tightly bound to 

brain tissue and is responsible for the differences in activity of the 

isomers and for the development of tolerance. Although there has been 

no direct evidence to refute this possibility, Sullivan et tl, (151) 

reexamined the metabolism of both isomers and did not find any evidence 

to support th.is concept although they were looking only at metabolites 

excreted in the rat bile and not at metabolites in the brain. They 

suggest that the "tightly bound" radioactivity found by Misra and Mule 

is due to exchange or metabolism of their tritium label. 

Although methadon.e gains access to the centra 1 nervous system (CNS) 
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FIGURE 1 
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to a greater degree than some narcotics, only a small portion of the 

total dose reaches the brain. Studies of the distribution of methadone 

in man (128), rat (94) and mouse (141) all show that the plasma and 

brain concentrations of methadone are very low in comparison to the 

levels found in the lung, liver, spleen and kidney. In addition to 

rapid passage of met�adone from the general circulation to tissue sites, 

methadone has been found to be extensively bound to human plasma pro­

teins (116). The high concentration of methadone in tissues may con­

tribute to its long half-life in man by serving as a depot for the 

drug. 

In non-tolerant inclividuals Verebely rt .tl_. (164) found a bi expo­

nential decay of plasma-methadone levels. The first phase had a half­

life of 14 hours ancl the second phase had a half-life of 53 hours. As 

the patients became tolerant and the methadone dose was increased, the 

plasma .half-life became mono-exponential with a half-life of 22 hours. 

In their study the percentage of the daily dose recovered in 24 hour 

urine and feces as methadone and EDDP was 19.2% and 3% respectively 

which increased to 42% and 20% respectively after 26 days of treatment. 

During the course of this study the daily dose of methadone was increased 

from 15 mg/day to 80 mg/day. The predominate product in the feces was 

EDDP while urine contained both methadone and EDDP. The urinary.excre­

tion of EDDP increased more rapidly than the excretion of methadone 

during treatment which, coupled wit� the shortened overall plasma half-

1 ife, was interpreted by the authors as indicating an induction of metha­

done metabolism. 

The qualitative metabolism of methadone in rats appears to be the 
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same as in humans (108, 151), In rats with biliary fistulas, Baselt and 

Casarett (10) found that 54% of a subcutaneous dose of methadone �ias 

excreted via the bile as EDDP while only 4,.2% and 6,0% was excreted in 

urine as EDDP and methadone, respectively, These authors found very 

little methadone or EDMP in bile but did find a water-soluble metabo­

lite which accounted for 30% of the dose, They later (9} identified 

this metabolite as a conjugate of hydroxy-EMDP. By examining the par­

tition coefficients of methadone, EDDP and EMDP, they found that EMDP is 

a somewhat unusual metabolite in that it is less polar than the parent 

methadone, and thus requires hydroxylation and conjugation in order to· 

be polar enough to be excreted. Since it has been shown that methadone 

and its metabolites in bile are not significantly reabsorbed from the 

intestine (160), the high concentration of methadone metabolites in 

bile would indicate this to be a major pathway of excretion of metha­

done in intact rats. 

Misra et.!!]_. (108) have shown that the half-life of methadone in 

rat brain after a subcutaneous dose is approximately 2,4 hours, Admin­

istration of methadone 10 mg/kg/day subcutaneously for 6 weeks shortened 

the half-life to 1,5 hours, This apparent demonstration of the ability 

of methadone to induce its own metabolism in vivo is supported by several 

studies (103, 148) where oral administration of methadone at doses in 

the range of 50 mg/kg/day produced a significant increase in the rate 

of methadone metabolism in vitro in the supernatant fraction of liver. 

These studies also tend to support the suggested increases in methadone 

metabolism seen in methadone maintenance patients, 

The controlled, 1 ong-term administration of methadone. for the purpose 
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of treating heroin addiction was begun by Dole and Nyswander in 1964 

(44). Their approach was to administer gradually increasing doses of 

methadone until patients were receiving 80-120 mg/day. This treatment 

was designed to induce a high degree of tolerance to narcotics so that 

the addict would not feel the need for, nor derive any euphoric effect 

from a "normal" injection of an illicit narcotic. During prolonged use 

of these high doses of methadone, tolerance to almost all the narcotic 

effects is dramatic, although constipation and sweating often remain a 

problem. Medical examination of patients who have been in methadone 

maintenance programs for several years failed to reveal any significant 

alterations in the general health of the patients during the course of 

treatment (83). 

The use of methadone maintenance unquestionably decreases the use 

of heroin. Even in the absence of counseling and additional programs 

aimed at rehabilitation, the simple removal of the constant need for 

the addict to find his next fix is a significant step in the altera-

tion of the addict's life-style which should improve his chances to 

avoid future drug use. More recent programs l1ave placed an increased 

emphasis on vocational, social and educational services in addition to 

simple dispensing of methadone· to facilitate the reentry of the metha­

done maintenance patient into the mainstream of society (4). Although 

the substitution of methadone for heroin works well, the results of 

long-term followup of patients once they leave treatment are less encour­

aging. Even the original proponents of the treatment seem fairly pessi­

mistic about the long-term "cure" (45). They cite statistics which 

show that of 204 patients who left treatment, almost half had resumed 
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use of illicit opiates. The remainder had become alcoholics, addicted 

to other drugs, been arrested or died. Only 22 of the 204 could be 

classified as in satisfactory status. Thus,. while methadone maintenance 

provides the addict the opportunity to refrain from herion, the bene­

ficial effect may last only as long as methadone maintenance is contin­

ued. Despite the poor prognosis after leaving, the benefits to the 

individual and society during treatment apparently justify the contin­

uation of methadone maintenance, as evidenced by the growth in the number 

of people currently under treatment. From the initial pilot program in 

1964 there were an estimated 80,000 people i.n methadone maintenance 

during 1975 (57). 

This popularity has generated much interest in the relationship of 

dose to plasma level to the incidence of symptoms during long-tenn admin­

istration of methadone. It is clear from several studies that different 

patients maintained on the same dose of methadone exhibit a large vari­

ation in plasma methadone values at any given time (70, 164). This is 

probably a reflection of the fact that even in the same patient on the 

same dose there are dramatic (sometimes almost two-fold) alterations in 

the plasma-methadone level from week to week, although these alterations 

in plasma level are only rarely correlated with patient complaints (40). 

Goldstein {58) has shown that the use of 160 mg/day vs 80 mg/day does 

not generally produce a better treatment record when evaluated on the 

basis of clinic attendance, use of illictt opiates, or side effects 

reported. In addition, decreases of dose at the rate of 5 mg/week are 

generally not detected by the patient, although doses below 50 mg/day 

,are. often not satisfactory (57). 
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These observations indicate that above a certain level (e.g. 50 

"mg/day) the absolute level of methadone is not important in blockade 

of heroin use. The maintenance patient becomes tolerant to the daily 

dose, and gradual changes in plasma levels, whether due to intentional 

dose alteration or alterations in absorption, distribution_, metabolism 

or excretion of the dose, are not detected by the patient. However, as 

also pointed out by Goldstein (58), rapid alterations jn dose will be 

detected if they alter the amount of methadone available more rapidly 

than the level of narcotic tolerance is altered. 

B) Ethanol 

Ethanol passes rapidly across· all mucosal membranes and thus is 

well absorbed from most routes of administration (167}. Once absorbed, 

ethanol rapidly distributes to all tissues, the rate of equilibration 

with blood being largely a function of the degree of vascularization 

and rate of blood flow. Equilibration of ethanol with the brain, for 

example, is very rapid as evidenced by a single pass extraction ratio 

of 93% (40). Th.e equilibrium distribution of ethanol is fairly uni­

form and generally follows the water content of the tissue. Jhus, 

brain and liver ethanol concentrations are approximately equal and 

only slightly lower than blood ethanol concentrations {77), a distribu­

tion markedly different from most other drugs. 

The major route of elimination of ethanol is by metabolism. Elim­

ination of ethanol by excretion generally accounts for less than 10% of 

the total dose administereda The major, if not the only, enzyme respon­

sible for the metabolism of ethanol .:ill vivo is alcohol dehydrogenase 
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(AOH) (105). This enzyme reaches its maximum velocity at very low con­

centrations of ethanol and thus the metabolism of ethanol follows zero -

order kinetics until blood-ethanol concentration falls to approximately 

10 mg/100 ml (77). The AOH-mediated oxidation of ethanol to acetalde­

hyde results in reduction of NAO to NADH and it is the availability of 

NAO which limits the rate of AOH (165). The acetaldehyde formed is 

rapidly oxidized to acetate again with the reduction of NAO to NAOH. 

Since the oxidation of acetaldehyde is faster than the rate of ethanol 

metabolism, acetaldehyde concentrations remain low and approximately 

constant irrespective of the concentration of ethanol (123). 

In addition to ADH there are two other enzyme systems which have 

been proposed to play a role in the metabolism of ethanol .f.!l vitro. 

These are catalase in the presence of a hydrogen peroxide generating 

system (81), and the NADPH-dependent microsomal ethanol oxidizing system 

(MEOS) advocated by Lieber and coworkers (88), Although the .f.!l vivo 

rate of hydrogen peroxide production is too low to permit a significant 

contribution of catalase to the metabolism of ethanol in vivo, it has 

been proposed that the observed microsomal metabolism of ethanol is due 

to contamination by catalase (127). Whatever the exact nature of the 

microsomal metabolism of ethanol, its contribution to _the metabolism of· 

ethanol iD_ vivo is probably small since pyrazole, which i:nhibits the 

activity of ADH in vitro, has little effect on MEOS, and does not alter 

catalase activity, is able to inhibit as much as 90% of the metabolism of 

ethanol in vivo (105). 

Prolonged feeding of ethanol results in a metabolic tolerance which 

has been proposed to be a result of an induction of MEOS (87), However, 
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chronic ethanol feeding also increases the activity of the sodium� 

potassium activated ATPase which would increase the concentration of 

ADP (159). This would stimulate mitochondrial reoxidation of NADH and 

could also account for increased ethanol metabolism by way of ADH. 

Despite extensive investigation, the mechanism or mechanisms by 

which ethanol produces its effects on the central nervous system (CNS) 

remain far from resolved. Studies of the effect of ethanol on isolated 

axons have shown that ethanol is capable of producing a slight depola­

rization, decreasing the rate of rise of the action potential, and 

also decreasing the size of the action potential (163). Although these 

effects would be consistent with the depressant properties of ethanol, 

these alterations are only observed at concentrations which would be 

lethal to the intact animal. Similarly, ethanol has been shown to in­

hibit both the increase in intracellular sodium and the decrease in 

intracellular potassium caused by electrical stimulation of rat brain 

cortex slices (75) but again, at ethanol concentrations of 1.0 to 2,0%. 

Although drastic concentrations of ethanol are required to produce an 

observable change in these systems, smaller concentrations may produce 

alterations in these functions which, although unobservable, could 

still be important in the generation of ethanol's CNS effects .:iI!_ vivo. 

In the last few years, interest has intensified in studies which 

su9gest a common link between chronic ethanol and/or opiate use. For 

example, Ho et tl· (68) have shown that in mice or rats chronically 

drinking ethanol, a single dose of morphine or methadone will decrease 

the amount of ethanol consumed. In addition, withdra11al of morphine 

from animals addicted to morphine increases their consumption of ethanol. 
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On the other hand, Blum��- (21) have shown that morphine is able to 

decrease the severity of the ethanol withdrawal syndrome in mice while 

concurrent naloxone treatment during the course of chronic ethanol expo­

sure decreased the resultant withdrawal syndrome when ethanol was dis­

continued (20). These authors speculate that these findings may be a 

reflection of the formation of tetrahydroisoquinoline alkaloids from con­

densation of aldehydes and catecholamines. It has been shown that acetal-

dehyde promotes the formation of tetrahydropapaveroline from condensation 

of dopamine and its first metabolite, dihydroxyphenylacetaldehyde in rat 

brain homogenates (43). This alkaloid has also been detected in vivo 
---

(161) after administration of ethanol and dopa, but not after a single 

dose of ethanol alone. 

Another tetrahydroisoquinoline alkaloid, salsolinol, derived from 

direct condensation of acetaldehyde and dopamine, has been detected in 

the brain of rats treated with pyrogallol and ethanol but again not in 

the brains of rats administered ethanol alone (38). The findings that 

salsolinol depletes regional brain calcium (as do morphine and ethanol) 

(132) and that salsolinol has some opiate activity in the guinea pig 

ileum, (62) suggest that the link between these ethanol-derived alkaloids 

and opiates may be a viable one. 

A major criticism of this link has been the failure to detect these 

alkaloids without prior pharmacological treatment. However, since these 

alkaloids are taken up by catecholamine neurons (64) they may be effec­

tively concentrated and produce significant effects at very low whole 

brain concentrations. In addition, a recent report indicates that sal-

solinol is detectable in brains of mice exposed to ethanol vapour for 
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five days without prior treatment with either dopa or pyrogallol (61). 

As analytical methods improve it may be possible to evaluate the forma­

tion of these products even after a single dose of ethanol and thereby 

further investigate their role in the acute and chronic effects of ethanol 

especially as they relate to opiate interactions. 

C) Ethanol and Other Drugs 

The investigation of the effects of drug combinations has been of 

concern for many years. As one of the most frequently used drugs, the 

study of the effects of ethanol in combination with other drugs has natur­

ally generated much interest, and several reviews of the field are avail­

able (50, 82, 125, 169). In addition to documentation of ethanol-drug 

interactions, investigators have started to ask how these interactions 

are produced. In this,respect, the work of Rubin and Lieber and their 

coworkers has been of fundamental importance in emphasizing the ability 

of ethanol to inhibit the metabolism of many drugs both iii.. vivo and iii.. 

vitro (133). 

Although ethanol decreases the iii.. vitro metabolism of many drugs, 

it is not a uniform inhibitor of all drug metabolism. In general, etha­

nol is a more potent inhibitor of the metabolism of type II drugs such as 

aniline than of the metabolism of type I compounds such as pentobarbital 

(133). For example, an ethanol concentration of 12.5 mM reduced the 

p-hydroxylation of aniline to 50% of control, but an ethanol concentration 

of 660 mM was found necessary to produce the same degree of inhibition of 

, the N-demethylation of ethylmorphine (35). Similarly, Liu et�- (93) 

found that the N-demethyl ati on of benzphetamine, another type I drug, 



www.manaraa.com

13 

was not altered by an ethanol concentration of 100 mM. These observa­

tions may be due to the fact that ethanol shows some similarities with 

-type II compounds. Addition of ethanol to microsomes produces a spectral 

change similar to that produced by type II compounds (134), and also 

decreases the rate of NADPH-cytochrome P450 reductase (133). Ethanol has 

also been reported to decrease the binding of aniline but not hexobar­

bital (135). However, later work has demonstrated the ability of higher 

ethanol concentrations (100-200 mM) to decrease hexobarbital binding as 

well (32). 

In addition to its effects on drug metabolism in vitro, an acute 

dose of ethanol is able to decrease the rate of elimination of a variety 

of drugs in vivo. Rubin et�. (133) showed that ethanol could decrease 

the rate of decline in whole blood-pentobarbital concentration in rats 

as well as in humans. The increased half-life of pentobarbital in rats 

was paralleled by an increase in the whole body half-life of pentobar­

bital which would indicate the alterations observed were not due solely 

to redistribution of drug. These workers also demonstrated an ethanol­

mediated increase in the half-life of meprobamate in the blood of humans. 

In these studies they gave an initial ethanol dose of 1 g/kg followed by 

24 g/subject every two hours thereafter and thus maintained a.fairly high 

ethanol concentration for the duration of. the drug ha l f-1 ife measure-

ments. Carpenter et�. in a very complete analysis of ethanol-mepro­

bamate interactions (24), found blood-meprobamate concentration in hum­

ans to be unaffected by a single dose of ethanol until at least 0.75 g/kg 

was· administered, Similar studies in humans have failed to reveal an 

ethanol-mediated alteration in serum concentrations of oxazepam (99), 
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diazepam and thioridazine (90) and dilantin (138), perhaps since these 

experiments all employed an ethanol dose of 1.0 g/kg or less. 

Studies in rats where higher doses of ethanol can be employed have 

shown significant alterations in drug concentration. For example, simul­

taneous intraperitoneal administration of glutethimide and 2.5 g/kg etha­

nol produced an initial decline in whole brain levels of glutethimide 

compared to control animals which was followed by a large increase in 

concentration 4 and 8 hours after the dose (67). It was also noted that 

ethanol treatment increased the brain/plasma ratio of glutethimide and 

caused an alteration in the within-brain distribution such that eleva­

tions in the pons-medulla concentration of glutethimide were greater than 

in the remainder of the brain. 

Oral administration of ethanol 30 minutes prior to oral administra­

tion of diazepam produced initially lower levels of diazepam and metabo­

lites in rat blood followed by concentrations greater than controls at 

later time periods (172). Ethanol also increased the whole brain concen­

tration of diazepam and metabolites and increased the relative amounts 

of diazepam/metabolites in brain. 

Combined intraperitoneal injection of ethanol and barbiturates has 

been shown to result in higher brain concentrations of pentobarbital (158) 

and phenobarbital (37) although the apparent half-life of pentobarbital 

in blood was not altered. Thus some of the increase in brain and blood 

barbiturate concentration may be due to increased absorption. Thomas 

et al. also noted that ethanol-treated rats excreted a smaller amount of 

pentobarbital metabolite (158), a finding similar to that of Coldwell et 

al. (36) who noted an increased concentration of phenobarbital and 
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decreased excretion of p-hydroxyphenobarbita l in ethanol-treated rats. 

In none of the above studies was an alteration in the brain/blood distri­

, bution of barbiturate noted. 

Malloy and Baesl (100) found that oral administration of ethanol 

two hours before intravenous administration of zoxazolamine or warfarin 

caused a significant increase in the plasma half-lives of these drugs in 

the rat. These authors attributed this increase to decreased microsomal 

metabolism of these drugs. 

Chung and Brown (30, 31) have advanced the hypothesis that ethanol­

mediated decreases in the rate of elimination of hexobarbital jl]_ vivo may 

be due not only to a direct effect of ethanol but also to an indirect in­

hibition of metabolism due to an ethanol-mediated increase in steroid 

release. They observed similar effects on elimination of hexobarbital 

in rats which were either administered acute stress by way of hindlimb 

ligature or ethanol. Further, inhibition of the metabolism of hexobar­

bital in 9000 X G supernatants after an jl]_ vivo dose of ethanol was only 

found in preparations from intact rats and not in preparations from 

adrenalectomized rats. These studies serve to illustrate that ethanol­

mediated alterations in the brain concentration of various drugs may be 

produced by the sum of many different effects. 

As might be expected, combination of ethanol with other CNS depres­

sants generally results in an increased toxicity which is the result of 

addition of the individual effects of each drug. Accordingly, barbi­

turates (173) as well as glutethimide (104) and chloral hydrate (53) are 

more toxic in ethanol-treated animals than they are when administered to 

control animals. A similar increase in toxicity is· observed with combi-
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nations of ethanol and tranquillizers such as chlorpromazine, promazine 

and promethaz i ne ( 48) . 

Combination of ethanol with drugs \�hich have some CNS stimulant 

properties are less easy to predict. For example, even though ethanol 

decreases the metabolism and excretion of amphetamine, and may produce 

increased tissue levels of amphetamine, there is no alteration in the 

LD50 of amphetamine (76). The results of administration of various mix­

tures of ethanol and chlorpheniramine show that low doses of ethanol 

actually antagonize the lethal effects of chlorpheniramine (145). These 

results may be a reflection of the ability of ethanol to counteract some 

of the stimulant effects of these drugs. 

The combined toxicity of ethanol and opiates has been studied as 

well. Wagner and Wagner (166) found that the simultaneous subcutaneous 

administration of etha·nol and methadone produced an increased toxicity 

which was approximately equal to the sum of the individual toxicities. 

The same conclusion was drawn by Eerola concerning the toxicity of ethanol 

and morphine (47). More recent investigations of the toxicity of a wide 

range of ethanol and morphine doses by McCoy et�. (97) revealed addi­

tive toxicity at high doses of ethanol but as observed with some stimu­

lants, low doses of ethanol protected their mice from the lethal effects 

of morphine. The authors ascribe this protection to the depressant pro­

perties of ethanol counteracting some of the stimulant properties of 

morphine. 

None of these investigators determined the concentration of drug in 

the CNS at the time of death and thus were not able to assess the impact, 

if any, of ethanol mediated alterations in drug disposition on the 
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Although the effects of ethanol on the disposition of methadone 

have not been previously studied, the effect of other drugs on the meta­

bolism and distribution of methadone has been examined. For example, 

chronic pretreatment of rats with phenobarbital has been shown to in­

crease microsomal metabolism of methadone and to decrease the antino­

ciceptive activity of methadone (3). Other workers have also shown that 

phenobarbital pretreatment increases the microsomal metabolism of metha­

done 1I!. vitro and suggest that this increased metabolism is responsible 

for the increased biliary excretion of methadone and methadone metabo­

lites observed after chronic phenobarbital administration (129). In a 

similar vein, pentobarbital-pellet implantation has been shown to de­

crease the antinociceptive and toxic effects of methadone while increas­

ing microsomal ethylmorphine N-demethylase activity in mice (69). 

In addition to the barbiturates, chronic treatment with rifampin 

may have the ability to induce the metabolism of methadone. Kreek et 

al. (84) have shown that the combination of chronic rifampin treatment 

with methadone maintenance results in a decrease in plasma methadone con­

centration in humans when compared to periods when rifampin was not ad­

ministered. However, the consistently lower plasma concentrations of 

methadone were not consistently accompanied by either shorter half-lives 

of methadone in plasma or consistent increases in excretion of methadone 

and metabolites, indicating that rifampin may alter methadone concen­

trations by other means in addition to microsomal enzyme induction. 
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Several agents have been shown capable of inhibiting methadone meta­

bolism or increasing the half-life of methadone in vivo. Pretreatment 

of mice with SKF-525A has been shown to increase the concentration of 

methadone in plasma and several tissues when compared to animals receiv­

ing methadone alone (141). The j__!!_ vitro metabolism of methadone is inhib­

ited by diazepam (148), although pretreatment of mice with diazepam or ox­

azepam does not alter the brain or plasma concentration .or half-life of 

methadone j__!!_ vivo (142). Whether this difference is due to a species 

difference or to other j__!!_·vivo effects of the benzodiazepines which mask 

alterations in the metabolism of methadone in vivo is not known. Liu and 

co-workers (92, 94) have found desipramine pretreatment capable of in­

creasing both the antinociceptive effect and tissue concentration of 

methadone in rats. In addition, desipramine inhibits metabolism of meth­

adone J_TJ_ vitro and inhibits the biliary and urinary excretion of methadone 

and its metabolites. 

Thus, despite the existence of studies of the effects of ethanol 

on drug disposition and of the effects of various drugs on methadone 

disposition, there are no studies available on the effect of ethanol on 

the disposition of methadone. The need for such a study is indicated by 

the information available on the incidence of the combined use of these 

two agents. 
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E) Ethanol and Methadone 

Although all methadone maintenance clinics collect random urine 

samples from their patients for the purpose of detecting drug use other 

than methadone, these clinics generally do not request an analysis for 

ethanol (163). There are many indications however, that alcohol use and 

alcoholism are significant problems in methadone maintenance patients. 

Analysis in our laboratory of a random group of 170 urine samples from 

methadone maintenance patients revealed that 18% had detectable levels 

of ethanol (greater than 0.02% w/v). Scott (140) reported that 25% of 

the methadone maintenance patients he studied were alcoholics by the 

standards of the National Council on Alcoholism, confirming a report (67) 

that in another program as many as 20% of the methadone maintenance 

patients were alcoholics. 

Not only is the incidence of alcoholism high, but some authors 

suggest methadone maintenance may increase alcoholism. In a program 

where patients were admitted to methadone treatment only if not alco­

holic, it was found that 34% were alcoholics after 4 years of methadone 

treatment (140). Another study found drinking to be one of the few 

significantly increased complaints during the course of methadone main­

tenance (118) which correlates well with the findings of another study 

which indicate that 70% of the problem drinkers in a methadone main­

tenance program became so after admission to treatment (98). 

These reports suggest that the use of ethanol by heroin addicts 

increases during treatment in the methadone maintenance program. This 

impression is confirmed by the results of Schut (139) who found that of 

100 patients, 68 drank "not at all" during daily use of narcotics, but 
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after 18 months of methadone treatment, only 38 still did not report 

drinking at all while 20 reported drinking "more" or "much more." A 

similar conclusion is drawn by Freedman (51). Both these authors note 

that alcohol use seems to increase during periods of methadone dose re­

duction (detoxification). There is not complete agreement about increased 

use of ethanol during methadone maintenance. One author claims a de­

crease in ethanol use (55} .. However, even in this study the overall inci­

dence of heavy drinking was 10%. 

The motivations for ethanol use in people using methadone are no 

doubt as diverse as the alcoholic drive in any population. However, the 

methadone user may have several additional reasons for ethanol use. 

In a series of interviews designed to determine the nature of the illi­

cit or "street use" of methadone, Agar (1) found that 33% of the people 

who use another drug with methadone use wine to "boost the methadone 

high." The intentional concomitant use of ethanol to intensify the 

methadone effect was also noted by others (26,89). Other possible rea­

sons for ethanol use in methadone maintenance patients could be: (1) to 

obtain a qualitatively different high since the patient is tolerant to 

the effect of narcotics, (2) decrease the side effects of methadone 

maintenance, or (3) as a device for access to a different social group. 

Bihari (18) indicated that very often the amount of alcohol con­

sumed by a methadone-maintenance alcoholic far exceeds that of a non­

opiate alcoholic and that as a consequence, the development, and medical 

consequences of, alcoholism in these people is much more rapid and 

severe. The incidence of alcohol use and alcoholism in methadone main­

tenance patients has motivated several centers (27 ,89,126) to use 
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disulfiram in combination with methadone to treat their patients who are 

addicted to both ethanol and methadone. 

An additional indication of the incidence of combined ethanol and 

methadone use comes from a report of drug findings in victims of non­

drug-induced violent deaths in New York City and Detroit, Michigan (13). 

This study showed that of those homicide victims who were using morphine 

at the time of death, 20% were also using ethanol while of those who had 

been using methadone, 40% were also using ethanol. A final indication 

of the magnitude of the combined use of ethanol and methadone comes 

from reports of the findings in cases of methadone overdose. The fre­

quency with which ethanol is found in published surveys of methadone 

overdoses varies. One study found that in sixteen cases of methadone 

overdose, thirteen had also ingested ethanol (26). This high incidence 

of ethanol in methadone deaths is not found in other studies (14, 101, 

128) although ethanol is frequently associated wi1h methadone deaths in 

these reports. A more reliable index of the involvement of ethanol in 

methadone deaths is obtained from the National Registry of Human Toxi­

cology which is compiled from voluntarily submitted toxicology reports 

from the entire United States (lll). The results in the Registry for 

1973-1976 show that 20% of the reports of methadone-induced death also 

involved ethanol. 

The degree of narcotic tolerance in the victims of methadone over­

dose is often hard to determine. Some are known to be tolerant, as they 

were enrolled in a methadone maintenance program. Others are thought 

to be non-tolerant by virtue of their recent confinement in a hospital 

or jail. In the remainder of the cases the victim may have been an 
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occasional or chronic user of illicit methadone. 

One would expect the methadone maintenance patient to be less sus­

ceptible to methadone overdose, but there exists one report (130) that 

patients maintained for long periods of time on high doses of methadone 

have a much higher death rate �1hen they are al so addicted to ethanol. 

Reporting on the results of analyses of methadone overdoses in New 

York City, Bastos (12) noted that the brain concentration of methadone 

in deaths due to ethanol and methadone tended to be lower than in cases 

of death attributed to methadone alone. However, the variability in the 

levels in both groups precluded a definite statement about the role of 

ethanol in these deaths. Much of the variability was probably due to 

the various degrees of narcotic tolerance in the cases examined, which 

cannot be controlled or even ascertained in human postmortem studies. 

F) Present Study 

This study was motivated by the information summarized above which 

indicates that there is a significant human exposure to combinations of 

ethanol and methadone. It is the purpose of this study to evaluate the 

nature and magnitude of some of the interactions of these two agents 

when administered in a controlled situation to laboratory animals. The 

interactions to be studied are summarized as follows: 

1) Effect of ethanol on the pharmacological activity of methadone 

Since methadone is both used and abused for its effects on the cen­

tral nervous system, the most meaningful effect to monitor would be a 

CNS effect. As one of the most prominent and well studied· CNS effects 

of methadone is its antinociceptive activity, this was the effect 
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ness in man (6) and for this reason they are two of the most widely 
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used tests of antinociception. Therefore, the activity of methadone in 

the tail-flick and hot-plate tests was used as a measure of its pharma-

cological activity in this study. 

2) Effect of ethanol on the magnitude and time course of brain 
methadone concentration 

As summarized in the introduction, ethanol has the potential for 

producing significant alterations in the amount of systemically adminis-

tered drug which reaches the CNS. In view of the possibility of ethanol 

mediated alterations in the absorption, distribution, metabolism or 

excretion of methadone, the concentration of methadone in the brain was 

determined simultaneously with antinociceptive activity. To reliably 

quantitate methadone in individual mouse brains, 3H-methadone was used 

in most of these experiments. 

3) Toxicity of ethanol and methadone combinations 

The antinociceptive and lethal properties of methadone are pro­

bably produced by effects on different systems and therefore, altera-

tions in antinociception may not necessarily imply alterations.in lethal 

effects. Thus, this study also investigated the effect of ethanol pre­

treatment on the toxicity of methadone as well as the effect of chronic 

methadone administration on the toxicity of ethanol. 
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MATERIALS AND METHODS 

A) Materials 

1) Drugs 

The 1-3H-1-methadone HBr used in this study was purchased from 

New England Nuclear (NEN). The initial specific activity was 110 mCi/ 

mmole. This was diluted with unlabled i,.l_-methadone HCl except where 

noted otherwise. The unlabled methadone was obtained from Ma11inckrodt. 

Unlabled .l_-methadone was a gift from Eli Lilly as were authentic samples 

of the two major metabolites of methadone, EDDP and EMDP. Naloxone HCl 

was a gift from Endo Laboratories, and SKF-525A was a gift from Smith­

Kline and French. Propoxyphene was purchased from Eli Lilly, morphine 

sulphate was purchased from Mallinckrodt, and meperidine HCl was purchased 

from Winthrop Laboratories. All ethanol solutions used in this study 

were prepared fresh from absolute ethyl alcohol U.S.P. purchased from 

U.S. Industrial Chemicals. 

2) Chemicals 

Omnifluor, Aquasol-2 and the 3H-toluene internal standard were pur­

chased from New England Nuclear. Omnifluor (4 g/liter) was dissolved 1n 

Scintill AR toluene purchased from Mallinckrodt. All other chemicals used 

were of analytical reagent grade. 

3) Animals 

The mice used in these studies were male Swiss (ICR) mice weighing 

between 19 and 30 g • .The rats emp.loyed were male Sprague Dawley weigh­

ing between 250 and 325 g. Animals were maintained on Purina Laboratory 
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Chow for rats and mice and tap water ad libitum in an animal room with 

a 12-hour light-dark cycle. Animals were purchased from Flow Research 

Animals, and were allowed to acclimatize for at least two days prior to 

experiment. 

B) Methods 
---

1) Dosing of Animals 

Unless otherwise noted, a 11 animals were deprived cif food but not 

water, and placed in wire bottom cages at midnight the night before the 

experiment. All experiments were conducted between 4:00 and 8:00 pm the 

next day during which time the animals did not have access to either 

food or water. The start of the normal dark cycle was at 7:30 pm. 

All drugs for subcutaneous injection were dissolved in 0.9% NaCl at 

a solvent volume of 10 ml/kg. All drug doses are expressed as the free 

base. Methadone administered by the oral route was dissolved in deion-

ized water. Ethanol was administered to rats as a 24% (w/v) solution 

in deionized water. Low-power microscope examination revealed that this 

concentration of ethanol produced reddening and pinpoint hemorrhaging of 

the gastric mucosa. For this reason all subsequent ethanol doses were 

administered as a 15% (w/v) solution. At this concentration there was 

no observable damage to the mucosa. Control animals received an equal 

volume of deionized water. 

Since the gross behavior of the animals was still affected by a 2.5 

g/kg dose of ethanol 30 minutes after administration, but the animals 

appeared normal at 60 minutes, most of the studies of the antinociceptive 
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effects of ethanol and methadone combinations were done at 60 minutes 

or more after the ethanol dose. 

Radiolabeled methadone was diluted with unlabeled methadone to pro­

duce a specific activity such that animals injected subcutaneously re­

ceived 5 to 10 µCi/kg (most frequently at a specific activity of 5 µCi/ 

mg) and animals dosed orally received 40 µCi/kg. Subcutaneous injec­

tions were made under the skin between the shoulder blades. 

Drug administrations were spaced to allow sufficient time to sacri­

fice and obtain samples from each mouse immediately after testing and 

still maintain the same time interval between drug injections and testing 

for all mice. Unless otherwise noted, mice were dosed and tested only 

once. Animals were killed by cervical dislocation. Blood was withdrawn 

from the heart with a 25-gauge needle and allowed to clot in a capped 

test tube. Clotted blood was centrifuged and the serum was refrigerated. 

In cases where whole blood was analyzed, it was collected over potassium 

oxalate and sodium fluoride. The brain was rapidly removed, blotted 

free of surface blood, wrapped in aluminum foil, and placed in a beaker 

in an ice bath. Liver and lung samples were removed and placed on dry 

ice. All tissue samples were stored frozen until analysis. 

2) Analysis of Injection Solutions 

All 3H-methadone solutions were stored at 4°C. Any methadone solu­

tion more than six months old was checked for concentration and radio­

chemical purity before use. Concentration was checked by dilution with 

0.5 HCl and measurement of UV absorption at 259 nm. Radiochemical 

purity was determined by extraction of an alkaline aliquot with 50 µl of 
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ethylene dichloride/isopropanol (S0/20,v/v) and thin layer chromato­

graphic analysis (TLC) in the solvent system described below. The TLC 

plate was scribed prior to application of the sample to provide channels 

approximately 1 cm wide. After development, the zone corresponding to 

methadone was scraped into a vial and the remainder of the channel was 

scraped into a second vial. Isopropanol (0.5 ml) and Omnifluor in tolu­

ene (10 ml) were added and the amount of radioactivity was determined. 

In addition, aliquots of the injection solution were used to prepare 

standards for the analysis of samples. Aliquots of the extracted aque­

ous layers·were counted to monitor exchange of tritium. At no time in 

the course of the study was any degradation of methadone or exchange of 

label observed in the injection solutions. 

3) Measurement of Antinociception 

The primary technique for the measurement of antinociception was the 

modified (11) tail-flick test of D'Amour and Smith (42). In this test 

the animal's tail was placed on a notch above a photocell so as to block 

the photocell. A photographic lamp mounted above the photocell was fo­

cused on the tail approximately 3 cm from the end. Activation of the 

lamp also started a timer placed in series. When the animal �erceived 

the heat from the lamp and moved his tail, light from the lamp hit the 

photocell and stopped the timer. A rheostat was used to adjust the 

intensity of the lamp so that unclosed animals flicked their tails be­

tween two and four seconds after activation of the lamp. 

A control or baseline latency was obtained for each mouse before 

dosing. At the appropriate time after drug administration , the latency 
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of the tail-flick was again determined. If animals allowed their tail 

to remain under the lamp for more than ten seconds, the heat produced 

marked tissue damage. For this reason a cutoff of ten seconds was em-

ployed. Antinociceptive effects were calculated as percent of the maxi­

mum possible effect (%MPE) according to this formula: 

%MPE � 
Test Latency - Baseline Latency 

10 - Baseline Latency X 100. 

In addition, when animals responded with a test latency less than ten 

seconds, their tails were replaced over the photocell with the lamp off 

to confirm that they would not move their tails within ten seconds in 

the absence of a painful stimulus. This was done to decrease the con­

tribution of possible random movement to the calculated antinociceptive 

response. In fact, it was found that unless the animals were held in a 

very awkward position they very rarely displayed any random tail move-

ments. In the cases where this was found, the animal was replaced in the 

cage for one to two minutes, replaced on the tail-flick apparatus with 

the light off for ten seconds, and then tested. 

The second measure of antinociception was the hot-plate test of 

Eddy and Leimbach (46). The mouse was placed in a clear plastic cylinder 

approximately 4" x 12" which was on a brass plate maintained at 57°c by 

a recirculating water bath. The time required for the mouse to react to 

the heat by licking its front paws or lifting one of his rear paws was 

measured with a stopwatch. A control reading was taken before drug ad­

ministration. The maximum time allowed was twenty seconds. The antino­

ciceptive effect (%MPE) was calculated according to the following formula: 

%MPE 
_ Test Latency - Baseline Latency 

X lOO. ' - 20 - Baseline Latency 
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Antagonism of the antinociceptive effect of methadone, or ethanol 

and methadone, by naloxone was determined by administration of various 

doses of naloxone to animals pretreated with ethanol and methadone in 

doses sufficient to produce approximately 80% MPE. Percent antagonism 

was calculated as follows: 

%MPE with naloxone 
%antagonism = 1 - %MPE without naloxone X 100. 

4) Determination of Methadone Concentrations 

a) Analysis of 3H-methadone in brain 

Whole brains were homogenized in 2 ml 0.5 N HCl with a glass and 

teflon tissue grinder (A.H. Thomas). The homogenizer was washed with 

2 x 2 ml 0.5 N HCl. The combined homogenate and washings were spiked 

with 500 µg of unlabeled methadone and 25 µg of both EDDP and EMDP. 

The extraction scheme, adapted from the method of Misra et�- (108), 

is presented in figure 2. Each brain was homogenized and extracted 

separately. The pH 9.6 NH4Cl/NH40H buffer was prepared by adjusting a 

saturated solution of NH4Cl to pH 9.6 with 15 M NH40H. 

Ten ml of the solvent extract from each brain or brain standard 

was evaporated in an individual vial. The residue in the vials was 

dissolved in 0.5 ml of isopropanol and 10 ml of Omnifluor in toluene 

was added. The remaining solvent extract from all brains which came from 

the same treatment group of mice·was pooled in an evaporation cup and 

evaporated at room temperature under a slow air stream. The residue 

was dissolved in 3.0 ml of 0.3 N HCl and transferred to a tapered centri­

fuge tube. The evaporation cup was then washed with an additional 1 ml 

of 0.3 N HCl. The combined acid washings were adjusted to pH 9.6 with 
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the NH4Cl/NH40H buffer and then vortexed with 100 µl of ethylene dichlor­

ide/isopropanol (80/20,v/v). The organic solution was applied to a 

Silica Gel G (250 microns) plate which had been previously scribed into 

1 cm channels,and developed in MeOH/benzene/rr_-butanol/H20/NH40H (60/10/ 

15/10/2, v/v) adapted from Beckett et�- (16). The zone corresponding 

to methadone was scraped into one vial and the remainder of the channel 

was placed in another vial. Isopropanol and Omnifluor were added as 

described above. Radioactivity in all samples was determined in a Beck­

man LS 300 scintillation counter and corrected for quenching by the 

external stindard method. The accuracy of the quench curve was checked 

by also using 3H-toluene as an internal standard in several samples 

from each batch. The results of both methods were in good agreement. 

The apparent methadone in each brain was calculated by comparison 

of the total DPM in the 10 ml solvent aliquot from samples to the number 

of DPM in the 10 ml of solvent from blank mouse brain standards that had 

been spiked with known amounts of 3H-methadone from the injection solu­

tion. It was found that methadone was extracted from human-brain homo-

genates to the same extent as from mouse-brain homogenates an.ct thus 

only one standard per batch was prepared from mouse brain, the remaining 

standards were prepared from human-brain homogenates. At least two 

standards were run with each ten samples. Brain methadone was calcu-

lated by the following formula in which the apparent brain methadone was 

corrected for the percent of total 3H which migrated with methadone on 

TLC: 

Apparent methadone (% as methadone) _ 
Brain Weight - ng methadone/gram of brain. 

For example: "300 ng" (0.85)/0.45 g = 567 ng/g. 
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The coefficient of variation for thirty-one standards extracted 

within a seven-week period was 7%. The recovery of added methadone from 

both human and mouse-brain standards was consistently greater than 95%. 

TLC zones were visualized with iodoplatinate spray (33). Some in­

creased sensitivity was observed when the spot corresponding to EMDP 

was sprayed with Dragendorff spray (33) instead of iodoplatinate. The 

Rf of EDDP, methadone and EMDP were 0.21, 0.50 and 0.75 respectively. 

The recovery of 3H-methadone spotted on the TLC plate was only ap­

proximately 75% for both extracted samples and standards as well as an 

ethanol solution of methadone applied directly to the plate. The losses 

were assumed to be due to incomplete removal of the drug from the silica 

gel particles. To see if the extraction procedure or the loss of 3H 

during TLC would affect the determination of brain methadone an experi­

ment was carried out with pooled urine from animals that had received 3H­

methadone. The pooled urine was split into two portions. One was ana­

lyzed by gas liquid chromatography (GLC), the other was added to two 

blank mouse-brain homogenates and carried through the above procedures. 

The GLC analysis revealed a 1/0.29/0.07 ratio (based on triplicate in­

jections) between methadone/EDDP/EMDP while the average of DPM in the 

corresponding TLC zones was 1/0.32/0.03. Thus, even though there is 

some apparent loss of 3H on the TLC plate, the relative amount of metha­

done to its metabolites is not altered and therefore the correction of 

apparent brain methadone to actual brain methadone should not be altered. 

b) GLC analysis of methadone in brain 

In addition to the analysis of brain methadone by the use of 
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3H-methadone, it was necessary to develop a GLC procedure for brain 

methadone determinations for two reasons. First, during the course of 

these experiments, it was found that the specific activity of methadone 

in the brain was altered when 3H-methadone was administered by the oral 

route. A more complete discussion of this problem is presented in appen­

dix I. In addition, experiments were conducted in mice maintained on 

unlabeled methadone where use of radiolabeled drug would not be possible. 

The GLC method employed was a modification of a procedure previously 

published from this laboratory (2). 

Although not affected by alterations in specific activity, the GLC 

method was less sensitive than the assay based upon the 3H-label, and 

therefore brains had to be pooled in groups of at least two. The brains 

were homogenized in the same manner as in the 3H-label assay but were not 

spiked with additional methadone or metabolites. Fifty micrograms of the 

internal standard SKF 525A (beta-diethylaminoethyldiphenylpropylacetate 

HCl) was added to the brain homogenate prior to pH adjustment. This 

compound has been used by others (73) as an internal standard for metha­

done analysis due to its structural similarity to methadone. The extrac­

tion scheme is presented in figure 3. 

The final extract vias analyzed on a Bendix 3300 gas chromatograph 

with flame ionization detectors. Each sample was injected on both a 3% 

OV-101 and a 3% OV-17 column to minimize the effect of any contaminants 

which would coelute with either methadone or the internal standard on 

one column or the other. The peak heights and areas as well retention 

times and methadone/SKF-525A ratios were determined by a Hewlett Packard 

2100 computer-based data reduction system. The amount of methadone in 
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FIGURE 3 

PROCEDURE FOR THE DETERMINATION OF METHADONE IN BRAIN 
BY GAS LIQUID CHROMATOGRAPHY 
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each sample was calculated by comparison of peak height ratios with 

coextracted brain standards spiked with known aliquots of the injection 

solution. At least one standard was run for every four samples. The 

results from both columns were in good agreement and were averaged to­

gether for each sample. 

The overall recovery of methadone was 85%. The major methadone 

metabolites were poorly back extracted by H2so4 but any metabolites in 

the final extract did not interfere with the methadone peak under the 

chromatographic conditions employed. Based on 5 standards, the within­

run coefficient of variation was 6% at a level of 1 µg. The minimum 

amount that could be reliably quantitated was 100 ng. 

In contrast to the extraction of methadone, the recovery of the 

internal standard was not the same from mouse and human-brain homoge­

nates. The internal standard recovery from human-brain homogenates was 

almost exactly twice the recovery from mouse brains and thus comparison 

of mouse-brain samples with human-brain standards would give an apparent 

brain concentration of methadone approximately twice as high as it should 

be (see appendix I). For this reason, in addition to standards prepared 

from human-brain homogenates, at least one standard prepared in blank 

mouse brains was run with each batch of samples. 

In addition, two analyses of pooled brain samples analyzed by this 

GLC method were also analyzed by a gas chromatograph/mass spectrometer 

(GC/MS). This confirmation was performed on an electron impact, mag­

netic sector mass spectrometer (Du Pont 49GB) set to monitor m/e 72 which 

is the base peak of methadone and a minor peak in SKF 525A. The GC/MS 

results were in very good agreement with GLC results, the average 
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difference between the t110 being 7%. The GC/MS ,ias also used to detect 

any residual brain methadone at twenty-four hours after the last mainte­

nance dose in methadone-tolerant mice. In the single ion detection 

mode the instrument was capable of detecting 5-10 ng of methadone. 

c) Determination of methadone in serum, liver and lung 

Serum was diluted with water. Approximately 0.4 g of liver or lung 

were homogenized in 0.5 N HCl. These samples were processed by the pro-

cedure described for brain. Liver and lung samples were removed from the 

freezer and homogenized immediately to minimize any alterations of the 

relative amounts of methadone and metabolites due to metabolism in vitro. 

d) Determination of liver methadone and metabolites 

---

The determination of the relative amounts of methadone and its meta-

bolites in liver was accomplished by preparing and extracting samples 

as described above. However, instead of scraping all the non-methadone 

area of the TLC channel into one vial, zones corresponding to methadone, 

EDOP and EMDP were scraped into separate vials. The remainder of the 

channel was then placed in a separate vial. In addition, a known ali­

quot of the extracted aqueous phase was also counted. The amount of 3H 

present as methadone, EDDP or EMDP was calculated by multiplying the to­

tal extractable 3H by the percentage of total radioactivity on the TLC 

plate which migrated �iith each metabolite. The total radioactivity in 

the organic solvent and extracted aqueous layers were summed. The ratio 

of total radioactivity to the radioactivity present as methadone or each 

metabolite or the radioactivity remaining in the aqueous phase was then 

determined. 
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Analysis of the final organic solvent extract from liver was also 

performed using iTLC sheets (type SA) purchased from Gelman. Thes.e 

"fiberglass sheets impregnated with silica gel were deve 1 oped in either 

benzene/ethyl acetate/methanol/NH40H (80/20/1.2/0.1, v/v) or !_-amyl alco­

hol/n._-butyl ether/water (14/17/1, v/v) according to the procedure of 

Misra et�- (109). After development, the strips were cut into 10-mm 

sections, placed in vials with 1 ml of isopropanol and then counted as 

described above. 

e) Methadone and metabolites in bile and urine 

Bile and urine samples from each treatment group were pooled, di­

luted with the NH4Cl/NH40H buffer, spiked with 30 pg of methadone, EDDP 

and EMDP, and vortexed with 200 µl of EDC/isopropanol (80/20). The or­

ganic solution was applied to a TLC plate and developed as described 

above. The samples were not hydrolyzed but simple solvent extraction 

still removed 80% of the radioactivity from the urine layer 60 minutes 

after methadone administration. 

5) Determination of Ethanol Concentrations 

a) Sample preparation 

Serum was analyzed without further preparation. Brain samples 

were removed from the freezer one at a time, weighed, and immediately 

homogenized in 2 ml of cold deionized water. The homogenate was trans­

ferred to a 5 ml volumetric flask. The homogenizer was washed with 

another 2 ml of cold water which was combined with the homogenate. The 

combined homogenate and wash was diluted to a volume of 5 ml with cold 

water. The flask was sealed and the contents thoroughly mixed. Brain 



www.manaraa.com

38 

samples were analyzed within 12 hours of the experiment as longer periods 

of storage tended to allow some loss of ethanol even when frozen. 

Samples of stomach contents were obtained by ligation of the esopha­

gus and duodenum followed by removal of the stomach from the mouse. The 

stomach was opened and the contents washed into a 25-ml volumetric flask 

with approximately 20 ml of cold deionized water. The level was brought 

to the mark with cold water, the flask stoppered, and the contents thor­

oughly mixed. 

b) Analysis 

Ethanol samples were analyzed by an automated head space analysis 

using a Perkin Elmer gas chromatograph (Multifract F-40). A known ali­

quot of the sample (500 ul) was- combined- in a 20 ml vial with 4.5 ml of 

an aqueous solution of �-propanol which serves _as an internal standard. 

The vial was sealed and incubated at 58°c for at least 20 minutes. An 

aliquot of the head space was automatically injected on a Carbopack C 

column at 110°c. The ratio of the ethanol peak.height to the .!!_-propanol 

peak height was determined by computer and the concentration of ethanol 

in the sample calculated by comparison to aqueous standards. The total 

amount of ethanol in the brain sample thus calculated was divided by 

the initial brain weight to yield the concentration of ethanol in the 

brain. For example, if 381 mg of brain was homogenized in 5 ml of water 

and this solution was found to contain a total of 0.602 mg of ethanol, 

then the brain contained 1.58 mg/g or 158 mg/lOOg. The concentra-

tion of ethanol in the aqueous standards was determined by a modi-

fied Cavett titration (114). The validity of using aqueous standards 
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in the analysis of brain samples was verified by adding known amounts 

of ethanol to blank mouse brains and preparing and analyzing them as 

described. The coefficient of variation for the ethanol analysis is 

less than 2% based on analysis of thirty aliquots of a blood sample con­

taining 0.10% ethanol (w/v). 

6) Locomotor Activity 

The locomotor activity cages used consisted of a clear plastic 

shoebox cage with a photocell at one end and a white light focu�ed on 

it from the other end. The cage was covered by a wire screen. There 

were six such cages housed in a metal cabinet with a fan to circulate 

air and serve as a constant "white noise" background. The photocells 

were connected to an analogue counter assembly (Lehigh Valley Elec­

tronics) so that the number of times the mouse interrupted the light 

beam could be quantitated. Two mice were placed in each cage and the 

doors to the cabinet were closed. After 10 minutes, the counter was 

activated and the number of counts during the next 30 minutes was re­

corded. 

7) Statistics 

All ED50
1 s, 1050

1 s and Ec50
1 s and their 95% confidence intervals 

were calculated and tested for significant potency and slope ratios by 

the method of Litchfield and Wilcoxon (91). All other data with excep­

tion of binomial data such as %MPE was tested by the tv10-ta i 1 ed t test 

(150). Binomial data (%MPE) were evaluated for significant differences 

by the Mann-Whitney U test (39). The only exception was in the evalua­

tion of the effect of ethanol alone on the tail-flick and hot-plate. 
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In this case the absolute latencies before and after ethanol were tested 

for sig·nificant (P (.05) differences by the.!. test. This is valid since 

absolute latency is a continuous, random variable as long as no animal 

reaches the ten second cutoff. 
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RESULTS 

A) Antinociceptive Activity of Ethanol 

The antinociceptive effect of ethanol 60 minutes after admini­

stration to male Sprague Dawley rats is presented in table 1. 

Increasing oral doses of ethanol produced increasing whole brain 

ethanol levels, however significant effects on tail-flick latency 

were not observed until a dose of 4.5 g/kg was employed. 

41 

The antinociceptive effect of various doses of ethanol in ICR 

mice is presented in table I'.'.. The serum and whole brain concentrations 

of ethanol follow the kinetics typical of a substance whose metabolism 

is described by zero order kinetics. After a dose of 2.5 g/kg brain­

ethanol levels fell at a rate of 48 mg/100 g/hour. No significant 

alteration of tail-flick latency was observed from 30 to 150 minutes 

following an ethanol dose of 2.5 g/kg. 

Following an oral dose of 2.S g/kg of ethanol mice appeared to have 

decreased locomotor and exploratory activity as well as reduced skeletal 

muscle coordination. These effects were maximal 30 minutes after the dose. 

At 60 minutes after administration, ethanol-pretreated mice ex.hibited 

the same behavior and muscle coordination as control mice. 

Although the end point in the hot-plate test requires a more 

coordinated motor response than the tail-flick, mice pretreated with 

2.5 g/kg of ethanol showed no increase in hot-plate latency at 60 rninut�s. 

Since an oral dose of 2.5 g/kg of ethanol did not elicit any activity 

in either the hot-plate or tail-flick tests it was the dose of ethanol 

used in most of the interaction studies. 
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TABLE 1 

TAIL-FLICK ACTIVITY OF ETHANOL IN RATS 

Dose %MPE Whole Blood Ethanol Brain Ethanol 

(g/kg, p.o.) Tail Flick mg/100 ml mg/100 g 
+ SEM + SEM 

1. 5 4.8 151 + 15 

2.5 3.0 169 + 39 161 + 38 

3.0 5.0 266 + 27 

4.5 10.8* 273 + 45 

Animals were dosed with ethanol (24% w/v) p.a. and tested 60 
minutes later. There were four rats/dose. 

* significantly different from zero at P <.05 

42 
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TABLE 2 

TAIL-FLICK ACTIVITY OF ETHANOL IN MICE 

Dose Time After Dose Serum Ethanol Brain Ethanol %MPE 
g/kg (Minutes) . mg/100 ml + SEM mg/100 g ±_ SEM Tail-Flick 

2.5 30 215 + 9 5.2 
45 252 + 56 205 + 15 -1.0 
60 222 + 40 193 + 7a 2.ob 
90 198 + 21 167 + 4 1.0 

120 167 + 29 148 + 8 0.1 
150 140 + 19 123 + 10 3.0 

4.0 60 413 + 67 319 + 21 13 

90 341 + 41 261 + 14 10 
120 311 + 33 5 
150 285 + 36 223 + 16 0.5 

6.0 60 675 + 51 500 + 45 85* 

Ethanol was administered p.o. as a 15% w/v solution. Mice were 
sacrificed immediately after testing. There were at least six mice/group. 

a Combination of this dose of ethanol with simultaneous administration 
of methadone 4 mg/kg s.c. resulted in a brain-ethanol concentration 
of 197 ±_ 18 mg/lOOg. 

b These mice also displayed an antinociceptive effect of -5% MPE in the 
hot-plate test. 

* Significantly different from zero at P <.05. 
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As shown in table 2, ethanol at a dose of 4.0 g/kg did produce 

some elevation of tail-flick latency. In addition, at this dose the 

effects of ethanol on muscle coordination and locomotor activity were 

more pronounced and long lasting. When tested on the hot-plate, the 

mice appeared to perceive the heat but were unable to coordinate the 

normal response. At a dose of 6.0 g/kg mice were extremely sedated 

and exhibited a very marked elevation of tail-flick latency as well 

as a total lack of spontaneous movement. 

B) Effect of Ethanol on Methadone Antinociception 

44 

As shown in figure 4, a 2.b g/kg dose of ethanol, which is not 

active in the hot-plate test alone, when combined with methadone produces 

a significant difference in the antinociceptive effect of methadone. 

The test was done 60 minutes after ethanol at which time the mice had 

recovered from the effect of ethanol on skeletal muscle coordination and 

displayed no change of latency due to ethanol alone. The rn50 of metha­

done is decreased from 3.2 mg/kg in control mice to l .6 mg/kg when com­

bined with ethanol. There is no significant difference in the slopes of 

the dose response curves but the ED50
1 s are significantly different at 

the 95% confidence level by the method of Litchfield and Wilc�xon (91). 

The combination of ethanol and methadone was also more active 

than methadone alone in the tail-flick test as shown in figure 5. There 

was no alteration of the tail-flick response by an ethanol dose of 2.5 

g/kg. Yet, when combined with methadone this dose of ethanol decreased 

the rn50 of methadone in the tail-flick test from 2.0 mg/kg to 0.8 mg/kg. 

Furthermore, when pretreated with 4.0 g/kg ethanol, mice displayed a 

methadone EDso of only 0.2 mg/kg. The slopes of the dose response curves 
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FIGURE 4. 

THE EFFECT OF ETHANOL Oil THE HOT-PLATE ACTIVITY 
OF METHADONE IN ICR MICE 
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THE EFFECT OF ETHANOL PRETREATMENT ON THE TAIL-FLICK 
ACTIVITY OF METHADONE 
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N = at least six mice/group. 
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were similar but the alterations of methadone potency were significantly 

different at the 95% confidence level by the method of Litchfield and 

Wilcoxon (91). Thus, these data indicate that ethanol produces a 

dose-related increase in methadone antinociception as measured in 

both the hot-plate and tail-flick tests. 

As shown in figure 6, a similar result is found in Sprague Dawley 

rats. Pretreatment with a dose of ethanol not active in the tail-

flick test (2.5 g/kg, see table I) produced a significant potentiation 

of methadone antinociception as evidenced by a decline in the ED50 of 

methadone from 4.3 mg/kg to 2.2 mg/kg, with no change in slope. 

C) Effect of Ethanol on Methadone Distribution 

1) Methadone Concentrations in Brain and Serum 

To examine the possibility that the increased antinociceptioi1 was 

due to an increased c�ncentration of methadone in the brain, the con­

centration of 3H-methaJone in the brain and serum of the mice used to 

construct the preceding dose-response curves was examined. The results 

of these determinations are presented in table 3. It can be seen that 

at each dose examined, the mice which received ethanol had a lower con­

centration of methadone in the brain but a greater antinociceptive 

response compared to the �later-pretreated controls. With the exception 

of the combination of water and 4.0 mg/kg methadone, the brain to serum 

methadone concentration ratio was approximately 1.0 and vrns not altered 

by ethanol pretreatment. 

As can be seen in the last column of this table the brain-methadone 

concentration in ethanol-pretreated mice was decreased by approximately 

20% compared to the water controls. However, ethanol potentiated 
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FIGURE 6 

THE EFFECT OF ETHANOL ON THE TAIL-FLICK ACTIVITY OF 
METHADONE IN SPRAGUE DAWLEY RATS 

2 3 4 

..... Control 
.... Ethanol 

5 

Dose of Methadone (mg/kg i. P·) 

48 

10 

Control ED
50 

= 4.3 (3.1-6.0), with Ethanol Eo50 = 2.2 (1.5-3.0) 

Ethanol (2.5 g/kg, p.o.) or water was administered 
45 minutes prior to methadone. Animals were tested 
15 minutes post methadone. N = 6 animals/group. 
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TABLE 3 

EFFECT OF ETHANOL ON BRAIN AND SERUM METHADONE CONCENTRATION 

Dose of Methadone Ethanol Pretreatment Water Pretreatment 
mg/kg (s.c.) 

I Ratio of 
Brain Levels @ 

% MPE # Methadone Level % MPE # Methadone Level 
ng/g _:!:_ SEM ng/g _:!:_ SEM 

Brain Serum Brain Serum 

0. 5 32 57_:!:_8 63+12 -- 70+13 83+17 I 0.81 

1. 0 

2.0 

3.0 

4.0 

62 139_:!:_8 156+15 25 159+8 151_:!:_12 I 0.87 

I 81 309+27 284+27 38 334+18 357_:!:_30 I 0. 93 

I 92 388+36 * 493+31 64 508+31 510+83 

I 
0.76 

I 100 642+55 * 651 +103 80 857+65 550+89 0.75 

Ethanol (2.5 g/kg, p.o.) or water was administered 45 minutes prior to Methadone. Mice were 
sacrificed 15 minutes later. Methadone levels were determined by liquid scintillation. 
N � at least 6 mice/group. * significantly different from control at P (.05 

@ Ratio of br;in methadone concentration in ethanol pretreated mice/water pretreated mice 
# analgesic effect in the tail flick test. 

_,,, 
CD 
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methadone to such an extent that even in the face of this slight 

decrease in brain methadone, the dose-response curve for methadone was 

still shifted to the left (figure 5). 

The effect of 4.0 g/kg ethanol on brain methadone was also 

examined. A dose of 0.5 or 1.0 mg/kg methadone combined with 4.0 g/kg 

ethanol produced brain concentrations of methadone of 62 ng/g ±. 13 

and 140 ng/g ±. 25 respectively. Thus, even though a 4.� g/kg dose of 

ethanol produced higher brain and serum levels of ethanol than 2.5 g/kg, 

the effect on methadone concentration in the brain is the same. 

2) Changes in Absorption and Distribution to Peripheral Tissues 

In order to investigate the reasons behind the decreased brain 

level of methadone when combined with ethanol, studies of the effects 

of ethanol on the absorption of methadone from the subcutaneous injection 

site and the distribution of methadone to other tissues were conducted. 

The injection site and underlying musculature were excised and washed 

twice with 0.5 N' HCl. An aliquot of the acid was mixed with Aquasol-2 

and raidoactivity was measured. It was found that 30 minutes after 

a 4.0 mg/kg dose, 90 and 92% of the dose had been absorbed from the 

injection sites in ethanol and water-pretreated animals respectively. 

Another possible reason for decreased concentrations of methadone 

in brain was an ethanol-induced increase in distribution of methadone to 

other tissues. Levels of 3H-methadone in brain, serum, liver and lung 

were detennined at various times after a 4.0 mg/kg dose of methadone 

following either water or ethanol (2.5 g/kg) pretreatment. The results 

of these detenninations are presented in table 4. As observed in the 

dose-response experiment (table 3), ethano'l produced a significant decrease 

in brain and serum methadone compared to control animals. However, this 
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Tissue 

Brain 
Tota1(2) 

Methadon/ 3) 

Serum 
Total 

Methadone 

Liver 
Total 

Methadone 

Lung 
Total 

Methadone 

TABLE 4 

THE EFFECT OF ETHANOL ON THE DISTRIBUTION OF METHADONE 
AND UNCONJUGATED METABOLITES 

Time After Methadone Administration(l) (Min.) 

30 90 150 210 
ETOH Control ETOH Control ETOH Control ETOH Contro1 

8.19 .±. .37** 11 . 2 .±. . 07
1 

3. 20 .±. . 12**. 6.49 .±. .30 . 94 .±. .15* 1.31 .±. .07
1 

0.58 :1:_.09 o. 63 .±. . 03 

6.96 .±. .31** 9.7 .±. 0.6 2.66 .±. .10** 5.41 .±. .25 .71:J:_.ll* l. 05 .±. . 06 0. 44 .±. . 07 0.49 .±. . 02 

8.81 .±. .20** 13.6 .±. 0.9
1

3.29 .±. .25* * 6. 41 .±. .31 o. 92 .±. .1 a , . , 6 .±. . , o I 0.59 .±. .08 0.48.±_.04 

7. 05 .±. . 25** 10.5 .±. 0.7 2.51 .±. .09** 5. 00 .±. . 35 0.70 .±. .12 0.83 + .07 0.43 .±. .06 0.35 .±. .03 

265 .±. 19 201 .±. 23 
1

149 + 13 , 25 + 15 

I 
62. , + 3. , 56.0 + 15 

1
36.5 + 2.5 42. l .±. 4.1 

92. 6 .±. 12 80.3 .±. 11 59.6 .±. 3.7 49. 8 .±. 3. l 25., .±. l. 3 23. 7 .±. l .8 15. 0 .±. 1 .8 13. l .±. 2.8 

I 
348 .±. 21 338 .±. 25 105 .±. 7 .4 99. l .±. 6. 5 52.0 .±. 3.9 45.3 .±. 5.3

1 
44. 1 .±. 5. 6* 30.9 + 2.8 

31 o .±. 19 301 .±. 22 88.9 .±. 6.3 80.3 .±. 5.3 41.1 .±. 3.1 36.2.±_4.2 35.3 .±. 4.5* 24.7 .±. 2.2 

(1). Ethanol or water was administered p.o. 30 minutes before Methadone, 4 mg/kg s.c. 
(2). Values are extractable DPMXl0-3/g of tissue wet weight _±_SEM, N = 6 animals/group. 
(3). Unmetabolized Methadone was calculated by correcting total extractable 3H for the% which migrated 

with Methadone on TLC as described in Methods. 

* different from control at P<.05 ;** different from control at P(.01 tJ'1 

f-' 
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was not accompanied by uniform significant increases in either liver 

or lung concentrations of methadone although at each time point invest­

igated the ethanol-pretreated mice had slightly greater methadone con­

centrations in these tissues. This finding agrees with the data on 

subcutaneous absorption since, if ethanol decreased brain-methadone 

concentrations only by decreased absorption, then liver and lung con­

centrations would be expected to be lowered also. \.Jhen liver and lung 

concentrations of methadone were examined in relation to the serum 

concentration of methadone perfusi ng them, ( tab 1 e 5) it vias seen that 

ethanol pretreatment produced a significant increase in hepatic and 

pulmonary uptake of methadone. 

In this experiment, as in all others where the brain/serum distri­

bution of methadone was examined, both brain and serum were found to 

contain approximately,equal concentrations of methadone. The only excep­

tion was in the dose-response experiment (table 3) where 4 mg/kg 

methadone in control mice gave a brain/serum ratio of 1.6. However, 

the experiment presented in table 4 shows that with this dose at 30 

minutes post methadone, the brain/serum ratio is 0.92, indicating that 

there is probably no real d6se-dependent alteration in methadone distri­

bution between brain and serum. 

The relative amounts of total 3H to 3H-methadone in brain and serum 

shown in table 4 are representative of the ratios determined in other 

experiments. There was no alteration in the relative amounts of 3H­

methadone to metabolites in brains from mice treated with 0, 2.5, or 

4.0 g/kg ethanol. These ratios were used to calculate methadone concen­

tration from total extractable 3H values as described in methods. As 

expected, the liver contained the greatest relative amount of methadone 
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Liver/Serum 

Ethanol 

Control 

Lung/Serum 

Ethanol 

TABLE 5 

EFFECT OF ETHANOL ON LIVER/SERUM AND LUNG/SERUM 

METHADONE RATIOS 

Time After Methadone Administration (min) 

30 90 150 210 

13.1 + 1. 5* 23.7 + 4.8* 35.9 .±:_ 4.1 34.9 + 3.2 

7.6.±:_1.0 9.96 + 1.2 28.6 + 3.2 37.4 + 3.6 

43.8 + 4.8* 35.4 + 4.3** 58.7 + 4.1* 82.1 + 4.9 

53 

Control 28. 7 .±:_ 3. 2 16.1 + 2.0 43.6 .±:_ 5.1 70.6 + 10.3 

Values are the ratios of methadone concentrations from Table 4. 

· *Significantly different from control at P <.05 

**Significantly different from control at P (.01 
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metabolites of the tissues examined. 

D) Correlation Between Brain Concentration of Methadone and Antinoci­
ceptive Effect 

In view of the effect of ethanol on the amount of methadone in 

the brain, a brain concentration-response curve may be a more valid 

measure of ethanol potentiation of methadone antinociception than 

the dose-response curve. The least square lines relating brain metha-

done to effect in animals administered methadone 15 minutes and 60 

minutes prior to testing were colinear and therefore, the data from 

both dose-response curves was used to construct the concentration-

response curves presented in figure 7. The concentration-response curve 

for 4.0 g/kg ethanol was obtained 15 minutes post methadone. 

In all three cases, pretreatment with water, 2.5 or 4.0 g/kg 

ethanol, there is a _very high correlation between whole brain methadone 

and antinociceptive effect. The correlation coefficients are 0.94, 

0.92 and 0.89 respectively. At any given brain concentration of metha-

done the antinociceptive effect is greater in ethanol pretreated mice. 

The Litchfield and Wilcoxon EC50•s for control, 2.5 g/kg and 4.0 g/kg 

ethanol treated mice are presented in figure 7. Ethanol pretreatment 

with a 2.5 g/kg dose produced an approximate threefold parallel shift 

in the concentration-response curve while pretreatment with 4.0 g/l<g 

produced an additional threefold shift to the left. These data show 

that the increased antinociceptive activity of methadone in ethanol-

pretreated animals was not due to an increased methadone concentration 

in brain. 
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FIGURE 7. 

CORRELATION BETWEEN BRAm CONCENTRATION OF METHADONE AND TAIL-FLICK ACTIVITY 

• 

EC50 (95% C. I. 

• Control 
Iii 2.5g/kg Ethanol 

A 4.0 gjkg Ethanol 

360 ng/g (240 - 540) 
105 ng/g ( 66 - 168) 

28 ng/g ( ld - 43 ) 

20 50 100 200 

Log Brain Methadone Concentration 
500 

(ng/g) 

1000 2000 

Ethanol ( 2.5 or 4.0 g/kg, p.o.) or water was administered 60 minutes prior to test. 
Methadone was administered s.c. 15 or 60 minutes prior to test. Brain methadone levels 
were determined by liquid scintillation. N = at least six mice/group . 

• +=points from the dose response curve 60 minutes post methadone 
all other points are from the dose response curve at 15 minutes post methadone 

a, 

a, 
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E) Effect of Ethanol on the Time Course of Methadone Antinociception 

1) Time course following subcutaneous administration 

Mice were adminstered either water or ethanol and injected 

with methaJone 30 minutes later. The effects of ethanol on methadone 

antinociception and brain level are presented in figure 8. As was 

found in the dose-response studies, ethanol-pretreated mice had lower 

brain concentrations of methadone but exhibited a greater antinoci­

ceptive response at every time point studied. Animals tested and 

sacrificed at 210 minutes were also tested for antinociception at 

60 minutes post methadone. Brain concentrations of methadone were 

lowered to approximately the same extent as found in the dose-response 

experiments. In addition, the relationship between brain level and 

antinociceptive effect both with and without ethanol was similar to 

that presented in ffgure 7. 

Since the antinociceptive response to methadone alone at 4 mg/kg 

was greater than 60% MPE for 60 minutes and the maximum possible effect 

is 100% MPE the potentiation of methadone by ethanol is better examined 

at lower doses of methadone. In figure 9 mice were orally dosed with 

ethanol and then immediately administered methadone (2 mg/kij) subcu­

taneously. In this case the effect of methadone and ethanol was greater 

than methadone alone throughout the time course investigated. The 

degree of potentiation seemed greatest at 60 minutes following methadone. 

Since the brain level and effect of both ethanol and methadone were 

changing during this experiment, potentiation was studied under condi­

tions where the effect of ethanol was constant. 

Results of the administration of ethanol at a uniform 60 minutes 
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FIGURE 8. 

EFFECT OF ETHAfWL Ofl THE TIME COURSE OF TAIL-FLICK ACTIVITY AND 

THE CONCENTRATION OF METHADONE IN BRAIN 

e--9 Control 
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Water or Ethanol(2.5 g/kg, p.o.) was administered 30 minutes prior 
to methadone. Brain levels determined by liquid scintillation. 
Each point represents the mean + SEM of six mice. 

* significantly different from control at P �.05 
** significantly different from control at P <.01 
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EFFECT OF ETHANOL OH SIMUL TAi·lEOUSL Y ADMINISTERED 
METHADOME 
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e------41 Control 

11111----11 Ethanol 

'J ------ l r ----

30 60 90 120 

Minutes Post Methadone 

\rlater or ethanol (2.5 g/kg, p.o.) administered at same 
time as methadone (2 mg/kg, s.c.). Brain levels of 
methadone were determined by liquid scintillation. 

58 

150 

Each point represents the mean+ SEM of at least six mice. 
** significantly different from-control at P <.01 
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THE TIME COURSE OF METHADONE TAIL FLICK ACTIVITY WHEN ETHANOL IS 
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Methadone (2 mg/kg) was administered s.c. and animals were tested at 
various times thereafter. In all cases either ethanol (2.5 g/kg, p.o.) 
or water was administered 60 minutes prior to testing. Brain methadone 
was determined by liquid scintillation. There were at least 6 mice/group. 

·** significantly different from control at P(.01 
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prior to testing and at various times after subcutaneous dose of 

methadone (2 mg/kg) are presented in figure 10. In this protoco1 

60 

the points at 15 minutes post methadone represent mice dosed with 

ethano1 or water 45 minutes prior to methadone and tested 15 minutes 

after methadone. si�ilar1y, the points at 105 minutes post methadone 

represent mice administered methadone 45 minutes prior to ethano1 or 

water and tested 60 minutes 1ater. 

The data on brain concentrations of methadone indicate that, as 

before, when ethanol was administered prior to methadone, the ethanol -

pretreated mice achieved lower methadone 1eve1s than their water­

pretreated controls. However, when methadone was administered con­

comitantly or prior to ethanol, the two groups achieved similar brain 

concentrations of methadone. When the antinociceptive response is cor­

rected for a1terations in brain methadone level between the two groups, 

ethanol produced an approximate twofold increase at al1 time periods 

with the exception of 60 minutes post methadone. As in figure 9, the 

re1ative potentiation seems to be greatest when ethano1 and methadone are 

administered simu1taneously and tested at 60 minutes post methadone. 

Since the antinociceptive effect is on a binomia1 scale, the. ratio of 

effect with ethanol/effect without ethanol is not the best way to 

gauge relative potency. In order to determine if the potentiation at_ 

60 minutes post ethano1 and methadone is greater than at other time 

intervals, the dose response curves in figure 11 were determined. 

In this experiment, ethano1 (2.5 g/kg) was administered oral1y 

and various subcutaneous doses of methadone were administered at the 

same time. In this protocol the potency ratio between methadone a1one, 
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FIGURE 11. 

THE EFFECT OF ETHANOL ON THE TAIL-FLICK ACTIVITY OF 
SIMUL TAilEOUSL Y ADMIMISTERED METHADONE 

e---e Control 
-- Ethanol, 2.5g/kg 
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Dose of Methadone (mg/kg s.c.) 

Ethanol (2.5 g/kg, p.o.) or water was coadministered with 
methadone and mice were tested 60 minutes later. N c six/group. 

Control ED50 = 2.8 (1.8-4.5) with ethanol ED50 = 1.0 (0.6-1.6) 
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and ethanol and methadone was 2.8 whereas the potency ratio 15 

minutes post methadone with a 45 minute ethanol pretreatment was 

2.5 (figure 5). The differences in potency ratio as well as diff­

erences in ethanol or water pretreated ED5o's between these two 

experiments were not significant. The concentrations of methadone 

in the brain and serum from these mice are presented in table 6. 

When ethanol and methadone were administered simultaneously, the 

brain concentration of methadone in ethanol-treated and control 

mice were generally similar. 

62 

In order to investigate whether the ability of ethanol to 

potentiate methadone declines more rapidly than brain-ethanol levels, 

three groups of mice were treated with 2.5 g/kg ethanol 90 minutes 

before subcutaneous administration of methadone (2 mg/kg) and tested 

at 60, 90 and 120 minutes post methadone (i.e. 150, 180 and 210 

minutes post ethanol) when the estimated brain ethanol levels would 

be 140, 116, and 92 mg/100 g respectively. The data presented in the 

first two horizontal lines of table 7 show that ethanol is able to 

potentiate methadone as well at 150-210 minutes post ethanol as it is 

at 60-120 minutes. The decreased antinociceptive effect between the 

above treatments is probably solely due to the lesser ethano1 levels 

during the test interval when ethanol is administered 90 minutes prior 

to methadone, rather than simultaneou�ly with methadone. 

2) Time course following oral administration 

Since in most human use of ethanol and methadone the route of 

administration is oral rather than parenteral, interactions were also 

studied following this route of administration. Figure 12 presents the 

results of oral administration of ethanol or water 30 minutes prior to 
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TABLE 6 

EFFECT OF ETHANOL ON BRAIN AND SERUM METHADONE CONCENTRATIONS 

Dose of Methadone Ethanol Pretreatment \·later Pretreatment Ratio of 
m /k (s. c.) I Brain Levels a. 

% MPE b 

0.5 12 

1. 0 43 

2.0 80 

3.0 --

4.0 95 

Methadone Level 
ng/g + SEM 

Brain - Serum 

37+10 43+8 
- -

63+12 109±_ 14 

168±_18 170±_23 

-- --

374±_28 397±_39 

% MPE b Methadone Level 
ng/q + SEM 

Brain - -serum 

-- -- --

8 89+10 111+12 I 
12 154+ 16 137+ 12 I 

45 281+36 302+53 

65 387+43 387±_50 I 

Ethanol (2.5 g/kg, p.o.) or water was coadministered with methadone. Methadone levels 
were determined by liquid scintillation. l·l� six mice/group. 

o. 71 

1. 09 

0.97 

aRatio of brain concentration of methadone in ethanol pretreated mice/water pretreated mice 

bAntinociceptive effect in the tail-flick test. 

a, 

w 
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TABLE 7 

COMPARISON OF SIMULTANEOUSLY ADMINISTERED ETHANOL WITH 
90 MINUTE ETHANOL PRETREATMEl'/T 

64 

% MPE in the Tail-Flick Test 

Time Post Methadone (min) 60 90 120 

Ethanol and Methadone 
Coadministered (figure 9) 90 40 10 

Ethanol 90 minutes before 
Methadone 67 36 10 

Water and Methadone 
(figure 9) 10 

There were at least six mice per group. 
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EFFECT OF ETHANOL ADMINISTERED BEFORE METHADONE 

....... * 
1 .......... .................. 

J_ ...... 

... � 

30 60 90 120 

Minutes Post Methadone 

e--e Control 
11---4 Ethanol 2.5g/kg 
......._ Ethanol 4.0g/kg 

150 180 210 

Ethanol (2.5 or 4.0 g/kg, p.o.) or water was administered 30 
minutes prior to methadone (8 mg/kg. p.a.). Each point represents 
the mean:!:_ SEM of at least six mice per group. 

* significantly different from control at P (.05 
** significantly different from control at P <.Ol 
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oral administration of methadone. Since the mice had been deprived of 

food for 16 hours prior to drug administration, the absorption of metha­

done was rapid in the control animals. A significant antinociceptive 

effect was noted as early as 7 minutes after methadone was administered. 

Mice tested at 7 minutes were retested and sacrificed at 120 minutes. 

Mice tested at 150 mi nut es were retested and sacrificed at 210 mi nut es. 

In control animals peak concentrations of methadone in brain were 

achieved at 30 minutes post methadone. Pretreatment with ethanol seemed 

to delay tl1e initial ·absorption of methadone but at times after 60 

minutes the ethanol-pretreated animals had a greater methadone concen­

tration in brain than the control animals. As was noted following 

subcutaneous administration, the effect of ethanol on the concentration 

of methadone in brain was not dose related. The effect of 4-.0 g/kg 

ethano 1 on who 1 e brain .. concentrations of methadone was the same as 2. 5 

g/kg ethanol. However, the increase in antinociceptive response is 

dependent upon the dose of ethanol administered. There was once again 

a strong correlation between brain methadone and antinociceptive response 

in all three groups. Since there was significant alteration in the 

specific activity of 3H-methadone following oral administration, all 

brain levels, although still corrected for the amount of metha3one meta­

bolites present, are reported as OPM/g (see appendix 1). 

Although some of the alterations in the concentration of methadone 

in the brain following this route of administration are presumably due 

to the same effect noted following subcutaneous administration, there 

seems to be an additional effect of ethanol upon the absorption of orally 

administered methadone. To invest1gate this, the amount of methadone 

remaining in the stomach at various times after administration was deter-
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mined. As can be seen in table 8, there is a rapid loss of methadone 

from the stomach in control animals. The loss of methadone is delayed 

following a dose of 2.5 g/kg ethanol. The same delay is observed 

following pretreatment with 4.0 g/kg ethanol. This loss of methadone 

from the stomach reflects the sum of absorption from the stomach as 

well as emptying of the stomach contents into the small intestine. The 

effect of ethanol outlasts the presence of ethanol in the stomach since 

by 60 minutes following both 2.5 and 4-.0 g/kg doses, approximately 95% 

of the ethanol had left the stomach. Thus, in addition to the effect 

of ethanol on methadone once it is absorbed, ethanol also causes an 

initial delay in methadone absorption following oral administration. 

In order to examine the potentiation of orally administered metha­

done without these significant alterations in the concentration of metha­

done in brain methadone was administered orally 30 minutes prior to 

ethanol. At this time approximately 90% of the methadone dose had left 

the stomach and thus alterations of the absorption of methadone would be 

expected to be less. Figure 13 shows that with this dosing protocol 

there were no significant alterations in the amount of methadone in brain. 

F) The Effect of Food Deprivation on Methadone Antinociception 

To investigate the possibility that the ethanol potentiation of 

methadone antinociception is mediated by its ability to alter blood 

glucose levels, experiments in which the nutritional status of the mice 

was changed were undertaken. The results of these manipulations are 

presented in table 9. 

Administration of ethanol to free-feeding mice would be expected to 

slightly elevate blood glucose concentrations (7) however, administration 

of isocaloric glucose (71) instead of ethanol did not alter methadone 
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TABLE 8 

EFFECT OF ETHANOL ON THE LOSS OF METHADONE FROM THE STOMACH 

Time After Methadone % of Dose in the Stomach 
(8 mg/1,g, p.a.) H2o group 2.5 g/kg group 4.0 g/kg 

30 9.6 22 19.6 

60 18.5 

90 4.8 17 

120 0.8 9.9 14. 7 

150 1. 4 4.8 

Ethanol was administered (p.a.) 30 minutes •prior to methadone. 
N = six mice/group. 

68 

group 



www.manaraa.com

3000 

FIGURE 13 

EFFECT OF ETHANOL ADMINISTERED AFTER METHADONE 
&------0 Control 

m 01 Ethanol 

� 2000 
0 
Ql 

C: 
0 

"U "' 
.c: 

ti 
� 

't------� ... 
J_ ...... . 

...
... 

c: 1000. 
''t-·� 

co 

.... 
(.l 

ffi 
Ql 

::i:i 
'iii 
"' 
0 
a.. 

E 

E 
·x "' 
� 

'2t. 

500 

100 

80 

60 

40 

20 

30 60 

-----! 

' . . ',, 
T 

.. 
. ',,..._ ______ .I,. ______ .J 

90 120 150 

Minutes Post Methadone 

Methadone (8 mg/kg, p.o.) was administered 30 minutes prior to 
ethanol (2.5 g/kg, p.o.) or water. Each.point represents the 
mean +·SEM of six mice per group. 

* sTgnifi cantly different from control at P <.os 
** significantly dHferent from control at P <.Ol 
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TABLE 9 

THE EFFECT OF FOOD DEPRIVATION ON METHADONE ANTINOCICEPTION 

food 
food 
food 

Treatment 

and water ad. 
and water ad. 
and water ad. 

lib. + water 
lib. + ethanol 
lib. + glucose 

deprived of food+ water 
deprived of food+ ethanol 
deprived of food+ glucose 

ED50 

3.7 
1.3 
3.5 

2.8 
l. 0 
2.3 

(95% C.I.) 

(2.6 - 5.3) 
(0.8 - 2.2) 
(2.3 - 5.3) 

(1. 8 - 4.5) 
(0.6 - l. 6) 
(l. 5 - 3.5) 
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Ethanol (2.5 g/kg, p.o.) or glucose (5.13 g/kg, p.o.) was simultaneously 
administered with methadone (s.c.). The ED5o's for mice deprived of food 
with and without ethanol are from figure 11. The methadone+ water, and 
glucose dose-response curves were based on methadone doses of 2,3 and 4 
mg/kg (s.c.). The dose response curves with ethanol were based on methadone 
doses of 0.5, l, and 2 mg/kg. There were five mice/dose. 
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antinociception in either free-feeding mice or food-deprived mice. 

In addition, ethanol produced an approximately equal shift in the 

rn50 of methadone in both free-feeding and food-deprived mice. 

Methadone seemed to be less potent in free-feeding mice but the 

Eo50
1 s in free-feeding and food-deprived mice were not significantly 

different. 

71 

Thus, since ethanol produced a similar shift in the ED50 of 

methadone in both deprived and free-feeding mice and substitution of 

isocaloric glucose was without effect in both states, the ethanol­

induced alteration of antinociceptive response is not an artifact of 

food deprivation and furthermore, is not a reflection of the effect of 

ethanol on the nutritional status of the mice. 

G) Effect of Methadone on the Concentration of Ethanol 

Since it was show� in table 2 that high concentrations of ethanol 

could increase tail-flick latency, another possible mechanism of the 

observed potentiation involves not the elevation of brain methadone by 

ethanol, but the elevation of brain ethanol by methadone. The results 

of bra i n-ethano 1 determinations in mice dosed orally with ethano 1 in 

combination with either methadone or water are presented in fi9ure 14. 

Both drugs were given by the same route of administration to increase 

the possibility for interaction. Table 8 shows that using this dosing 

schedule at least 10% of the methadone dose was still in the stomach 

when ethanol was administered. 

Since the brain concentration of ethanol when combined with 

methadone is similar to the ethanol concentration obtained when ethanol 

is administered alone, and these concentrations of ethanol are without 
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THE EFFECT OF METHADOfff ON BRAIN CONCENTRATION OF 

ETHAfWL 

Ir--@ Ethanol alone 

.......i. Ethanol+Methadone 

0 45 90 135 180 
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Methadone (8 mg/kg, p.o.J or water was administered 30 minutes 
prior to ethanol (2.5 g/kg, p.o.). Each point represents the 
mean+ SEM of at least five mice. Brain ethanol was determined 
by GLC. * significantly different from ethanol alone at P <.05 
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significant effect on tail-flick latency (table 2), none of the 

increased antinociceptive effect of ethanol and methadone combinations 

can be attributed to a simple elevation of the brain concentration of 

ethanol. 

In addition to the data in figure 14, the effect of methadone on 

ethanol concentrations was also studied in Sprague Dawley rats as shown 

in table 10. Methadone administered intraperitoneally in doses up to 

4.0 mg/kg did not alter the whole brain or whole blood concentrations of 

ethano 1 compared to a·nima 1 s that received the same ora 1 dose of ethano 1 

alone. The effect of methadone in this case would be expected to be 

sma 11 si nee ethano 1 was administered 45 minutes prior to methadone and 

animals were sacrificed only 15 minutes after methadone. However, since 

this is the same dosing schedule used in the dose-response curves 

presented in figure 6,., it shows that the observed increased activity 

of ethanol and methadone combinations in rats is not due to alterations 

of brain ethanol levels. 

H) Effects of Ethanol on the Excretion of Methadone Metabolites and on 
the Half-Life of Methadone in Brain 

To assess the impact of ethanol administration on the metabolism 

and excretion of 3H-methadone, the relative amounts of methado'ne and its 

metabolites in bile and urine were determined by TLC analysis. In that 

the samples were not hydrolyzed prior to solvent extraction, these results 

deal only with alterations in the amounts of unconjugated metabolites. 

As can be seen in table 11, the urine, after subcutaneous administration 

of methadone contains approximately equal concentrations of methadone 

and EDDP and very little EMDP while bile contains almost equal concen-

trations of all three substances. When methadone is administered orally 
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TABLE 10 

EFFECT OF METHADONE ON ETHANOL CONCENTRATIONS 
rn RATS 

Methadone dose 
mg/kg i. p. 

0 

2.0 

3.0 

4.0 

Whole Blood Level 
mg/100mg ±. SEM 

1 69 + 59 

177 + 26 

174 + 31 

163 + 36 

Brain Level 
mg/lOOg ±. SEM 

161 + 38 

158 ±. 27 
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Ethanol (2.5 g/kg, p.a.) was administered 45 minutes prior to Methadone. 
Levels of Ethanol were determined 15 minutes after Methadone. 
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TABLE 11 

EFFECT OF ETHANOL ON UNCONJUGATED METHADONE METABOLITES 
IN BILE AND URINE 

Pretreatment Methadone --------- URINE BILE 

*
* 

I * I 

Administered Methadone :EDDP EMDP Methadone 
I 

EDDP : EMDP 

Ethanol s. c. 44. 3 :I'_ 8. 1 I s3. 3 .:t:_ 9. 1 3. 1 .:t:_ 1. 2 20. 7 .:t:_ 3. 2 144. 8 :!:_ 8. 1 I 34. 6 .:t:_ 6. 7 

l•/ater s.c. 45.7.:t:_12**149.8:!:_12 5.2:!:_2.0 20.8:!:_ll !51.8:!:_ll 127.5:::_4.6 
. I I 

Ethanol p. o. 
I ,. I 

11.6 :!:_ 2.3 186.5 :!:_ 3.2 2.5 :!:_ o.6 10.2 :!:_ 1.6 58.6 :!:_ 5.3 I 31.2 .:t:. 5.1 

Water 
I 

p.o. 
i ** 

I 
I 

1
10. 2 + 1. 2 : 84. 5 + 3. 7 s. 7 + 3. 1 I 10 + 2. 9 64. 7 + 3. 9 i 25 .1 + 2. 9 - , - - 1 - - I -' . 

l ' 

Values are expressed as percent of total radioactivity present as each metabolite :t:_ SEM. 
Bile and urine were collected at time of sacrifice 60 to 120 minutes after administration 
of methadone 8 mg/kg, p.a. or 2 mg/kg, s.c. N = at least 18 mice/treatment. Samples were 
pooled in groups of three. 

* significantly greater than mice dosed by other route of administration at P <.05 
** significantly greater than mice dosed by other route of administration at P <.01 

"-J 

"1 

·-
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the metabolism of methadone is apparently enhanced as evidenced 

by the significantly greater relative amount of methadone meta­

bolites after this route of administration. 
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There was no significant ethanol-induced alteration in the 

relative proportions of methadone and its metabolites. The observed 

alteration of metabolites following different routes of administration 

serves as a positive control and shows that alterations in the rate 

of metabolism could be detected. Other than EDDP and EMDP, no other 

3fH abe 1 ed methadone metabo 1 i tes were detected in either bile or 

urine. 

Figure 15 shows that the ill vivo half-life of methadone in brain 

is not altered by pretreatment with 2.5 g/kg of ethanol. Tl1e half­

life in control mice is 45 minutes and in ethanol-pretreated mice is 

39 minutes. The brain. level data in this figure were taken from 

figure 8. The dose of methadone was the same in both ethanol and water­

pretreated mice but as noted previously, the ethanol-pretreated animals 

displayed a lower concentration of methadone in brain than the control 

mice. 

In the course of brain and serum 3H-methadone determinations, the 

ratio of methadone to total methadone plus metabolites was determined 

as described in methods. In no experiment was a significant difference 

in this ratio observed between ethanol and water treated mice (for example, 

see table4). 

If there were qualitative or quantitative alterations in methadone 

metabolism these changes would be expected to be most easily observed in 

the liver where the concentration of the drug is higher and where most 
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Water or ethanol (2.5 g/kg, p.a.) was administered 30 minutes prior 
to methadone. Brain levels of methadone were determined by liquid 
scintillation. Each point represents the mean! SEM of six mice. 
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of the metabolism occurs. The results of the analysis of methadone in 

liver are presented in table 12. 

The relative amounts of methadone, EDDP and EMDP are almost identi­

cal in animals dosed subcutaneously or orally, with and without ethanol 

pretreatment. The greater relative amount of EDDP noted in the urine 

of animals dosed orally is explained by the significantly greater liver/ 

brain ratio in these animals. The 3H which was not extracted from the 

homogenate represents the sum of water soluble metabolites of methadone 

and any lipid soluble metabolites of methadone not extracted by the 

solvent. Studies with authentic methadone, EDDP and EMDP indicate 

that approximately 5% of these compounds are not extracted by the pro­

cedure employed. The significantly greater percentage of non-extracable 

3H in animals dosed orally is probably caused by exchange of label 

following this route of administration (see appendix I) rather than 

an increase in the formation of water soluble metabolites. 

The routine TLC procedure did not reveal any 3H other than that in 

the zones corresponding to methadone, EDDP and EMDP. To see if other 

metabolites were formed, the liver samples following oral administration 

of methadone were further analyzed in two iTLC systems using silica 

gel impregnated fiberglass sheets as described in methods. E�en in 

these systems no evidence for the formation of additional metabolites 

in either control or ethanol-pretreated mice could be found. It is 

possible that other known metabolites of methadone could have been formed 

but lost in extraction or TLC steps or not detected due to the low 

specific activity of methadone employed. 

Of particular interest are the reduced metabolites of both g_ and 
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Pretreatment 

Ethanol 

Water 

Ethanol 

Water 

TABLE 12 

EFFECT OF ETHANOL ON METHADONE METABOLITES 
IN THE LIVER 

Methadone Non-Extractab1e Liver/Brain 
Administered Methadone EDDP EMDP 3H Methadone 

s.c. . 38 + . 05 .34 + .06 .14 + .03 . 15 + . 05 28.9 + 4.5 

S. C. .35 + .06 .33 + .09 .13 + .03 .19 .±. . 04 21.0 + 6.9 

p.a. .30 + .03 .29 + .06 .10 + .02 . 31 .±. . 05 62. 7 + 10. 7 

p.a. .28 + .07 .25 + .05 .12 + . 06 .35 + .07 55.5 + 7.1 

Results are expressed as the ratio of methadone or metabolite DPM to the tota1 DPM/g of 
liver(+ SEM) 60 minutes after the methadone dose as described in Methods. Ethanol or 
water administered p.a. 30 minutes prior to methadone (8 mg/kg, p.a.) or simultaneous1y 
witn methadone (2 mg/kg, s.c.). N= 12 mice/group. 

** significantly different from mice dosed s.c. at P <.Dl 

** 

** 

-..J 

<D 
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l-methadone, alpha-1-methadol and alpha-.s!_-methadol (152) respectively. 

Although alpha-.s!_-methadol is not an active metabolite, alpha-1-methadol 

possess antinociceptive activity of the same order of magnitude as 

.s!_,l:-_methadone (152). Since the administration of ethanol produces a 

marked increase in the NADH/NAD ratio in the liver (87), it is possible 

ethanol would also increase the production of these reduced metabolites. 

I) The Effect of Ethanol on the Antinociceptive Activity of ]-Methadone 
� and Other Narcotics 

Rather than go through an extensive search for the reduced metabo-

lites of methadone, their possible role in the ethanol-mediated poten­

tiation of methadone antinociception was evaluated by combining ethanol 

and ]-methadone. If increased production of reduced metabolites of 

methadone is a reason for increased antino_ciception from .sl_,l-methadone 

then ethanol would be unable to potentiate the action of l-methadone 

since its reduction metabolite possesses almost no antinociceptive act-

ivity. 

The results of this experiment are presented in figure 16. As would 

be expected, the control ED50 of l-methadone is approximately one-half 

that of .s!_, l-methadone. More interestingly, simultaneous administration 

of 2.5 g/kg of ethanol produced a significant potentiation of l -metha­

done antinociception, reducing the ED50 from 1.4 mg/kg to 0.6 mg/kg. 

The results of combination of ethanol and other narcotics are 

presented in Appendix II. 

J) Antagonism of the Tail-Flick Activity of Ethanol and Methadone by 
i�a 1 oxone 

If the increased antinociceptive effectiveness of combinations of 

methadone and ethanol is due to a true potentiation of the narcotic 
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THE EFFECT OF ETHANOL PRETREATMENT ON THE TAIL-FLICK 
ACTIVITY OF 1-METHADONE 
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.2 .3 .5 .6 1.0 2.0 3.0 4.0 

Dose of Methadone (mg/kg s.c.) 

Ethanol (2.5 g/kg, p.o.) or water was coadministered with methadone 
and animals were tested 60 minutes later .. N = at least six mice/group 

Control EDso= 1.4 (0.9-2.2), with ethanol ED50
= 0.6 (0.4-0.9) 
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agonist properties of methadone by ethanol then this effect should. 

be antagonized by a specific narcotic antagonist such as naloxone. To 

test this, 36 mice were treated with 2.5 g/kg ethanol 45 minutes prior 

to subcutaneous administration of 1.3 mg/kg methadone. Another group 

of mice was pretreated with water and administered 3.6 mg/kg methadone 

subcutaneously. Twelve mice from each group were tested for tail-. 

flick latency 15 minutes after methadone. These mice also received 

subcutaneous saline 30 minutes prior to testing. The mice treated 

with ethanol and methadone had an average concentration of methadone 

in the brain of 245 ng/g :!:. 32 and an antinociceptive effect of 74% 

MPE. The animals which received 3.6 mg/kg methadone had an average 

concentration of methadone in the brain o�740 ng/g :!:. 27 and an antin­

ociceptive effect of 86% MPE. 

The remaining mice were administered various doses of naloxone 

instead of saline and tested for tail-flick latency in order to est­

ablish the dose-response curves presented in figure 17. The mice which 

received 0.05 mg/kg naloxone had an average brain-methadone level of 

276 ng/g :!:. 19 and 702 ng/g :!:. 37 in the ethanol and methadone, and metha­

done alone groups respectively. 

To assess the effect, if any, of naloxone on the tail-flick activity 

of ethanol, the highest dose of naloxone used, 0.05 mg/kg was combined 

with high doses of ethanol (table 13). Although 6.0 g/kg ethanol pro­

duced a significant elevation of tail-flick latency, this effect was 

not altered by naloxone. 

Despite the lack of effect of 0.05 mg/kg naloxone on ethanol alone, 

naloxone at this dose was able to produce an almost 90% reduction in the 
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ANTAGONISM OF THE TAIL-FLICK ACTIVITY OF ETHANOL 
AND METHADONE BY NALOXONE 
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2-l--������---,-������.-���
,-

�����-

.01 .02 .04 .06 

Dose of Naloxone (mgjl<g s.c} 

Animals were pretreated with either ethanol (2.5 g/kg, p.a.) or 
water at Time = 0, injected with naloxone at T=30 min., injected 
s.c. with 1.8 or 3.6 mg/kg methadone respectively at T=45 min. 
and tested at T=60 min. N = 6 mice/group. 

1050 against Methadone = 0.032 mg/kg (.021 - .049) 
ID50 against Ethanol and Methadone = 0.026 mg/kg (.019 - .035) 
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TABLE 13 

EFFECT OF NALOXOIIIE ON THE TAIL-FLICK ACTIVITY OF ETHANOL 

Dose of Etha no 1 Brain Level of %MPE %MPE 
g/kg, p.o. Ethanol with saline with O. 05 mg/kg 

mg/1 OD g :1:. SEM Naloxone s.c. 

2.5 193 + 7 2.0 

4.0 312 + 25 -4.1 1.2 

6.0 500 + 45 85 73 

Mice were administered ethanol 30 minutes prior to naloxone and 
tested 30 minutes later. There were five animals/group. 

84 
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antinociceptive effect of ethanol and methadone. In addition, as 

shown in figure 17, naloxone antagonized ethanol and methadone in 

85 

the same manner as it antagonized methadone alone. That is, although 

the mice administered ethanol and methadone had much lower brain­

methadone levels compared to the mice administered methadone alone, 

the slopes of the dose-response curves as well as the calculated Io50•s 

were i dent i ca 1 in both groups. 

K) Effects of Ethanol in Methadone-Tolerant Mice 

Since the combined use of ethanol and methadone in humans most 

frequently occurs in methadone maintenance patients who are tolerant 

to methadone it is important to investigate the effects of the combin­

ation in a chronic as well as in an acute situation. To do this, mice 

were made to 1 erant to methadone by once daily admi ni stra tion of methadone 

at a constant oral dose of 20 mg/kg. 

Since the half-life of methadone in the brain of mice following 

subcutaneous administration is less than 1 hour it was thought that the 

dose would have to be increased or administered more frequently to pro­

duce tolerance. To monitor tolerance, groups of six mice were tested 

for tail-flick activity and brain concentration of methadone _during 

the course of the 20 mg/kg/day treatment. As shown in figure 18, after 

four doses of methadone the antinociceptive activity of methadone was 

reduced by half although brain methadone was only slightly decreased 

compared to the results of the first dose. It was therefore thought that 

tolerance would develop even at a daily dose of 20 mg/kg and this dose 

was continued. Figure 18 Shows that after 3 days (or eight 20 mg/kg doses) 

the brain concentration of methadone 60 minutes after a 20 mg/kg dose 
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FIGURE 18 

DEVELOPMENT OF TOLERANCE TO DAILY DOSES OF METHADONE 
20 mg/kg/day (p.o.) 
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10 

Tail Flick activity was determined and animals were sacrificed 60 
min after the daily dose of methadone. Brain methadone was 
determined by GLC. Each point. represents the mean! SEM of six mice. 

* significantly different from result of first dose at P<.os 
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had significantly declined from 650 ng/g to 400 ng/g and the 

antinociceptive effect had declined from 85% MPE to 25% MPE. 

87 

Thus, chronic methadone administration had apparently induced its 

own metabolism but the fact that the antinociceptive effect declined 

more rapidly than the brain concentration of methadone indicates 

some ms tolerance to methadone. A parallel group of twelve mice 

were tested for physical dependence 24 hours after their eighth 

dose of methadone (20 mg/kg/day). Subcutaneous injection of naloxone 

at 3 or 9 mg/kg did not precipitate any jumping in these mice. Naloxone 

did produce signs of hyperventilation and increased urination and 

defecation. Analysis of the brains from these mice by GC/MS failed to 

reveal any residual methadone. Considering the sensitivity of the GC/ 

MS assay, this indicated that if any free methadone existed in the brain 

at this time it was at a level less than 5 ng/g. 

The effect of the daily administration of methadone at a dose of 

20 mg/kg on body weight and locomotor activity was also determined. As 

can be seen in figure 19, the first dose of methadone produced a signi­

ficant elevation in locomotor activity. Tolerance to this effect was 

rapid and by the third dose there was no elevation in locomotor activity 

compared to control animals. The methadone treatment produced some 

decline in bociy weight but the alteration was not significant. 

Since the animals maintained on methadone had free access to food 

and water at all times, the absorption and antinociceptive activity of 

an oral dose of methadone in free-feeding naive mice was investigated. 

Figure 20 shows the whole brain concentrations of methadone and the an­

tinociceptive effect of methadone in these animals. Animals tested and 
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FIGURE 19 88 

THE EFFECT OF METHADONE ON BODY 'WEIGHT AND LOCOMOTOR ACTIVITY 
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** significantly different from control at P (.01 
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THE EFFECT OF A SINGLE 20 mg/kg ORAL DOSE 
OF METHADONE IN NAIVE MICE 
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Each point represents the mean of six mice+ SEM. Brain levels 
were determined by GLC. 
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90 

sacrificed at 210 minutes were a1so tested at 90 minutes post methadone. 

In order to investigate whether the to1erant mice would sti11 dis­

play an increased antinociceptive effect if the brain concentration of 

methadone was increased, mice maintained on 20 mg/kg/day were admini­

stered 40 mg/kg methadone (figure 21). This dose of methadone in tol­

erant mice produced a brain concentration of methadone a1most equa1 to 

the concentration obtained fo1lowing a 20 mg/kg dose in naive mice and 

greater than that following the norma1 maintenance dose of 20 mg/kg. 

The tolerant mice did derive a greater antinociceptive effect from these 

increased methadone concentrations since at 60 minutes these mice 

disp1ayed 70% MPE while mice maintained on 20 mg/kg displayed 25% 

MPE. Mice tested at 15 and 60 minutes were retested and sacrificed 

at 150 and 90 minutes respective1y. 

The effect of water or 2.5 g/kg ethanol administered 30 minutes 

before the eighth methadone dose of 20 mg/kg is presented in figure 22. 

At 30 minutes both groups had identical brain concentrations of methadone. 

At later time periods the ethanol-pretreated mice had brain concentrations 

of methadone greater than control. To compare the effects of ethano1 

on brain methadone and antinociception, the areas under the correspond­

ing curves were integrated from 30 to 150 minutes post methadone (table 

14). These results indicate that although ethano1 pretreatment in 

to1erant mice produced a 35% greater brain level, it increased the 

antinociceptive response by 367%. A 40 mg/kg dose increased brain metha­

done by 70% compared to 20 mg/kg with ethano1 in tolerant mice but stil1 

produ·ced an antinociceptive response 13% 1 ess. Thus, a1 though ethanol 

in free-feeding, methadone-to1erant mice produced s1ightly greater brain 
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FIGURE 21 

TAIL-FLICK ACTIVITY AND BRAIN-METHADONE LEVELS IN 
TOLERANT MICE (40 mg/kg, p.o.) 
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Mice were administered methadone ( 20 mg/ kg/ day, p. o. ) for 
seven previous days. The eighth dose was 40 mg/kg, p.o. 
Brain levels of methadone were determined by GLC. 
Each point represents the mean� SEM of six mice. 
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THE EFFECT OF ETHANOL AND METHADONE IN METHADONE-TOLERANT MICE 
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Minutes Post Methadone 

Animals were administered methadone (20 mg/kg/day, p.o.) for seven 
previous days. Thirty min. before the eighth dose mice were dosed 
with ethanol(2.5 g/kg, p.a.) or water. Each pbint represents the 
mean:!:_ SEM of six mice. Brain levels determined by GLC. 

* significantly different from control at P <.o5 
** significantly different from control at P (.01 
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TABLE 14 

COMPARISON OF AREAS UNDER GRAPHS OF METHADONE CONCENTRATION 
VS TIME AND % MPE VS TIME 

93 

Treatment Figure# Response '!:i_ Time Brain Level vs Time 

20 mg/kg, tolerant, 
ETOH 22 367 135 

20 mg/kg, tolerant, 
water 22 (100) (100) 

20 mg/kg, naive, 
water 20 343 194 

40 mg/kg, tolerant, 
water 21 320 235 

Areas were integrated from 30 to 150 minutes post methadone and 

normalized against the areas under the curves from the 20 mg/kg tolerant 

mice administered water. 
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concentrations of methadone compared to controls, ethanol was still 

able to potentiate methadone in the tolerant state as evidenced by 

the much greater increase in antinociceptive response. Mice tested 

at 15 minutes post methadone were retested and sacrificed at 150 

minutes. 

94 

As shown in figure 23, the half-life of methadone in brain after 

a 20 mg/kg oral dose in free-feeding naive mice is 150 minutes. In 

tolerant, free-feeding animals the half-life is decreased to 66 min­

utes in control mice but ethanol pretreatment in tolerant mice increased 

the half-life to 144 minutes. 

Analysis of the serum concentration of ethanol in tolerant mice 

(table 15) shows that the initial absorption of ethanol is slightly 

decreased compared to naive mice deprived of food. At later times 

the tolerant mice had slightly greater serum concentrations of ethanol. 

Comparison of serum concentrations of ethanol in tolerant free-feeding 

mice and naive free-feeding mice shows that these alterations are pro­

bably due to the presence of food in the stomach rather than to 

tolerance to methadone. The ethanol concentration obtained in free­

feeding tolerant mice is not significantly different from that obtained 

in food-deprived mice. 

L) Toxic Effects of Ethanol and Methadone Combinations 

Since the antinociceptive properties of methadone were poten­

tiated by ethanol, an investigation of the effect of ethanol on the 

lethal properties of methadone was undertaken to see if this effect 

would also be potentiated. Animals were deprived of food for the 16 

hours prior to dosing. The LD50 experiment was started at 4:00 p.m. 
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FIGURE 23 

v/HOLE BRAIN HALFLIFE OF METHADONE FOLLOWrnG A 20 mg/kg ORAL DOSE 
IN NAIVE Arm TOLERENT MICE 
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Minutes Post Methadone 

Mice were administered methadone (20 mg/kg/day, p.o.) for seven 
previous days. Thirty min. before the eighth dose mice were dosed 
with ethanol(2.5 g/kg, p.o) or water. Brain methadone was determined 
by GLC. Each point represents the mean_±_ SEM of six mice. 
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TABLE 15 

ABSORPTION OF ETHANOL IN METHADONE-TOLERENT MICE 
WITH FOOD AND lvATER AD. 1-_lli. 

Time After Ethanol Serum Ethanol (mg/100 ml ±. SEM) 
2. 5 g/kg p. 0. 

(min) Naive* Naive** Methadone Tolerent 

60 222 + 40 

90 198 + 21 226 .:!:. 17 

120 167 ±. 29 161 + 10 

150 140 + 19 155 + 12 

*Deprived of food for 16 hours prior to dosing 

**With free access to food and water 

174 + 21 

203 + 31 

153 + 15 

162 + 25 

96 
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Figure 24 shows the effect of ora11y administered ethanol on the 

Lo50 of ora1ly administered methadone. All animals that died app­

eared to die as a result of respiratory depression. No convulsions 

were observed. The high doses of methadone emp1oyed increased the 

locomotor activity of control mice and seemed to counteract the 

initia11y decreased locomotor and exploratory behavior of the ethanol­

pretreated mice. Although not initially anticipated, one of the most 

significant effects of ethanol in this experiment was an alteration 

in the time of death. 

Control animals died at an average of 19.7 ±:. 3.5 minutes after 

methadone administration. Pretreatment with 2. 5 g/kg ethanol increased 

the latency of death to 36.9 ±:. 11.3 minutes. The mice pretreated with 

4 g/kg that died within the 6 hour observation period died at an average 

of 98 ±:. 17 minutes after dosing. All survivors were al1owed access to 

food and water 6 hours after dosing. The only deaths between 6 hours 

and 24 hours were several of the animals pretreated with 4 g/kg. Although 

included in the calculation of the 24 hour Lo50� these anima1s were 

excluded from the calculation of latency of death and brain concentration 

of methadone at death. 

The 24 hour LD50 of methadone was not significantly alt�red by 

pretreatment with 2.5 g/kg ethanol. Pretreatment with 4 g/kg ethanol 

did result in a significant decrease in the LD50 of methadone. 

Because of the previously demonstrated effects of ethanol on oral 

absorption of methadone (figure 12) and the above noted alterations in 

latency of death, the Lo50 experiment was repeated using subcutaneous 

administration of methadone as shown in figure 25. In this case, the 



www.manaraa.com

-cJ 

ct! 

0 

:::J2 0 

99.9 

99 

90 

70 

50 

30 

10 

2 

FIGURE 24 98 

THE EFFECT OF ETHANOL ON THE LD50 OF METHADONE (p.a.) 
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Mice were pretreated with either ethanol (2.5 or 4.0 g/kg, p.a.) 
or water 30 min. prior to administration of methadone. Mice were 
observed for 24 hrs. after the dose. There were at least six 
mice per group. 
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THE EFFECT OF ETHANOL ON THE L050 OF METHADONE (s.c.) 
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__ Methadomi_Dose (mg/kgs.c.) 
Mice were pretreated with either ethanol (2.5 g/kg, p.o.) or 
water 30 minutes prior to administration of methadone. Mice were 
observed for 24 hrs. after the dose. There were 10 mice per group. 

Control LD50 = 41_mg/kg (33-51) 

with 2.5 g/kg ETCH LD50 = 49 mg/kg (44-51) 
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latency of death was equal in both ethanol and water-pretreated 

animals at 14.2 t 7 and 16.3 t 9 minutes respectively. As noted 

following oral administration, the subcutaneous LD50 of methadone 

was also not altered by pretreatment with 2.5 g/kg ethanol. 

100 

The brain concentrations of methadone in animals that died during 

the course of the LD50 experiments were determined by GLC. As shown 

in table 16, animals pretreated with 2.5 g/kg in the oral LD50 experi­

ment died at significantly lower brain concentrations of methadone than 

controls. Tile animals pretreated with 4.0 g/kg died at even lower brain 

concentrations of methadone. 

In parallel with the daily administration of methadone at 20 mg/kg/ 

day to produce tolerance, another group of mice were administered increas­

ing oral doses of methadone until they were being maintained on 100 mg/ 

kg/ day. In these mice. there were no deaths due to the daily dose when 

given alone. However, when these mice were administered either 200 mg/ 

kg methadone or 2.5 g/kg ethanol combined with the normal daily dose of 

100 mg/kg methadone, approximately 30% of each group of mice <lied (table 

16). Analysis of brain methadone in these animals showed that the 

animals that died as a result of ethanol and methadone administration 

died at slightly lower brain methadone levels than the animals'which died 

due to methadone alone. 

Prompted by this observation of an approximate twofold increase in 

toxicity in animals maintained on high doses of methadone (table 16), 

the LD50 of ethanol in both naive and tolerant mice was investigated 

as shown in figure 26 and table 17. 
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TABLE 16 

BRAIN CONCENTRATIONS OF METHADONE IN METHADDrlE DEATHS 

ETHANOL METHADONE BRAIN METHADONE LEVEL AT 
DOSE DOSES DEATH, µg/g .:1:. SEM 

Acute (p.o.) 0.0 75-120 mg/kg 4. 9 .:1:. 0.4 

2.5 75-120 mg/kg 3.5 + 0.5* 

4.0 65-90 mg/kg l. 9 + o. 3 * ** 

·--------···-· ·--------- ·- -- ·-------

Acute (s.c.) 0.0 45-55 mg/kg 5.5 + 0.5 

2.5 45-55 mg/kg 3.9+0.3* 

Tolerant a (p.o.) 0.0 l 00 mg/kg 

2.5 l 00 mg/kg b 5.1 + 0.7 

0.0 200 mg/kg C 7.6 + l .2 

aTolerant animals were administered methadone, 100 mg/kg/day for seven 
previous days. This dosing level was attained by first administering 
50 mg/kg for one day, then 75 mg/kg for one day and finally 100 mg/kg. 

b2.5 g/kg ethanol with 100 mg/kg as the eighth dose killed 9/30 mice 
(=30%). 

ci�ater with 200 mg/kg as the eighth dose killed 5/18 mice (=28"%). 

* significantly different from control at P <.05 
*** significantly different from control at P <.005 
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TABLE 17 

LD50 OF ETHANOL IN METHADONE-TOLERANT MICE 

Treatment LD50 g/kg, p.o. (95% C.I.) 

Naive 8.3 (7.2-9.5) 

40 mg/kg/day 7.0 (5.8-8.4) 

100 mg/kg/day 2.8* (2.3-3.4) 

Mice were not deprived of food and were administered ethanol as 

a 25% w/v solution 30 minutes prior to their daily dose of methadone. 

There were four groups of six mice/group in each treatment. Mice in 

the 40 mg/kg/day group were administered 40 mg/kg/day for ten days. 

Mice in the 100 mg/kg/day group were dosed as described in table 16. 

*Significantly different from naive mice@ P <.05 
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DISCUSSION 

A) Antinociceptive Activity of Ethanol and Methadone 

104 

The results of this study demonstrate that a 2.5 g/kg oral dose of 

ethanol did not significantly alter the hot-plate response of mice, 

although a dose of 4 g/kg interfered with this response. This finding 

confirms and extends the early work of Smith and Loomis (144) who found 

that the intravenous administration of ethanol at a dose of 1.0 g/kg did 

not alter the latency of mice in the hot-plate procedure. 

The present study al so shows that oral doses of ethanol less than 

4.5 g/kg did not significantly alter the tail-flick response of rats. 

Administration of a 2.5 g/kg oral dose of ethanol to mice did not alter 

their tail-flick response at any time period examined. Increasing the 

dose to 4.0 g/kg produced a slight increase in latency, but signifi­

cant effects on tail-flick response were not observed until higher doses 

were administered. As shown in figure 26, the slope of the Eo50 and 

LD50 curves are similar, which suggests the observed alterations in 

ta i 1-fl i ck lat ency may be due to general CNS depression. 

These results are similar to the results of other tests of antino­

ciception, which are also unaffected by low doses of ethanol. For exam­

ple, a 2.0 g/kg oral dose of ethanol did not significantly alter the 

.2_-phenylquinone writhing response (65, 143), however the effects of higher 

doses 1vere not reported. Using the toothpulp threshold of rabbits, 

Stanton and Keasling (149) showed that intravenous doses of ethanol less 

than 3 g/kg did not produce an effect, but increasing the dose of etha­

nol produced elevations in threshold which were \>/ell correlated with 
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blood-ethanol levels. In contrast.to these results, some test proce­

dures such as shock titration procedures in trained rats or electrical 

stimulation of the rat tail are altered by intraperitoneal administra­

tion of as little as 1.0 g/kg ethanol (22). 

The effect of ethanol is similar to that of chloral hydrate and 

paraldehyde, which also display antinociceptive properties.at high doses 

in the electrical stimulation of the mouse-tail test (112). On the other 

hand, barbiturates have been reported· to have either no antinoci cepti ve 

properties in the rat-tail compression test (52) or to produce increased 

sensivity to pain (hyperalgesia) at subanesthetic doses in the hot-plate 

(144) and electrical stimulation of the _mouse-tail tests (112). 

In this study the effect of ethanol on methadone antinociception 

has been studied in a number of different experimental protocols. When 

a dose of ethanol not active by itself in the tail-flick test (2.5 g/kg) 

was administered prior to (figure 8) or simultaneously with (figure 9) 

subcutaneously administered methadone, the antinociceptive response was 

greater than methadone treated controls at every time point studied. 

The same was true when both drugs were administered by the oral route 

(figure 12). This increased antinociceptive effect is not due to an 

ethanol�mediated increase in whole brain concentrations of methadone. 

In fact, ethanol pretreatment, especially when methadone is also admi­

nistered orally, results in significant decreases in the who 1 e brain 

concentration of methadone when compared to water�pretreated controls. 

However, ethanol increased the antinociceptive effect of methadone to 

such a degree that in spite of the lower brain concentrations of metha­

done, ethanol-pretreated animals displayed a greater antinociceptive 
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effect. 

To reliably determine the magnitude and significance of the differ­

ences between ethanol and water-treated animals, dose-response curves 

were established at various times after administration of methadone. A 

su11JTiary of the dose-response curves is presented in table 18. These 

results show that a dose of ethanol which by itself is not active in the 

tail-flick or hot-plate tests produced a significant increase in the anti­

nociceptive effect of methadone in both rats and mice as measured by the 

tail-flick test, and also increased methadone antinociception as measured 

in the mouse hot-plate test. The potency ratio when mice were adminis­

tered ethanol and methadone simultaneously and tested at 60 minutes post 

methadone is slightly greater than the potency ratio when mice were ad­

ministered ethanol 45 minutes prior to methadone and tested 15 minutes 

post methadone. As can be seen in tables 3 and 6, pretreatment with 

ethanol lowered·brain methadone compared to_controls while the brain 

concentration of methadone was not decreased relative to controls when 

methadone was coadministered with ethanol, which may be responsible for 

the difference in the potency ratios. 

Due to the ability of ethanol pretreatment to decrease brain con­

centrations of methadone, a more useful measure of relative potency may 

be obtained from a brain-methadone concentration Y.2- response curve 

(figure 7). When examined in this way, it can be seen that ethano 1 

increased methadone antinociception to the same degree at 15 minutes 

post methadone as it did at 60 minutes post methadone.-

The calculated whole brain Ec50 of methadone (360 n�/�was approx­

imately four times the whole brain EC50 of morphine in the tail-flick 
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TABLE 18 

SUMMARY OF DOSE-RESPONSE EXPERIMENTS 

Dosing Protocol Species Testa Figure# Potency Rat ;ob 

H2D/E,45,M@l5 Mouse HP 4 2.0 

H20/E,45,M@l5 Mouse TF 5 2.sc 

Hz0/E,45,M@l5 Rat TF 6 2.0 

H2D/E and M@60 Mouse TF 11 2.8 

A dosing protocol where water or ethanol (2.5 g/kg, p.o.) was 

administered 45 minutes prior to methadone (s.c.) and animals were 

tested 15 minutes later is abbreviated as H2D/E,45,M@15. 

aHP = hot-plate test, TF = tail-flick test. 

bpotency ratio = control ED50/ED50 in presence of ethanol. In each 
case the ED50

1 s are signif1cantTy different at the 95% confidence 
1 evel. 

Cpretreatment with 4.0 g/kg ethanol gave a potency ratio of 10. 
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test (117). Studies of the relative affinity of methadone and morphine 

for stereospecific binding sites (119) as well as the relative potency 

of both drugs after intraventricular injection (86) indicate that metha­

done is intrinisically less effective as an analgesic than morphine. 

The observation from this study that greater whole brain concentrations 

of methadone are required to produce the same antinociceptive response 

as a lesser whole brain concentration of morphine is in agreement with 

these studies. 

The dose-response curves for methadone in the presence of 0, 2.5 

or 4.0 g/kg ethanol (figure 5) clearly show that the effect of ethanol 

on methadone antinociception is dependent upon the dose of ethanol, 

since the ED50 of methadone in the presence of 4 g/kg ethanol is signi­

ficantly different from the ED50 of methadone in the presence of 2.5 

g/kg ethanol, which is· significantly different from the control rn50 

of methadone. 

In addition to being responsive to different doses of ethanol at 

a fixed time after ethanol, the increased antinociception also seems 

to be responsive to changes in brain ethanol at various times after a 

dose of ethanol. Dose-response curves to methadone were not established 

at various times after a single dose of ethanol. However, the results 

in figure 13 where ethanol was administered 30 minutes after methadone 

show that the amount of methadone in brain is almost constant from 15 

minutes post ethanol (i.e. 45 minutes post methadone) to 60 minutes 

post ethanol, however, the antinociceptive response increased from 40% 

MPE to 100% MPE as brain ethanol levels (from figure 14) rose from 116 

to 208 mg/100 g. At 30 minutes post ethanol, the brain concentration 
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of ethanol was almost at its peak value, but the antinociceptive re­

sponse was only 60% MPE. At 60 minutes post ethanol, the brain concen­

tration of ethanol was slightly greater than at 30 minutes, but the 

antinociceptive response increased from 60 to 100% MPE. Thus it seems 

that increases in antinociceptive response lagged slightly behind 

increases in brain concentrations of ethanol. The results of adminis­

tration of ethanol 90 minutes prior to methadone compared to simulta­

neous administration of ethanol and methadone (table 7) suggest that the 

decay of the increased antinociception parallels the decline in brain 

ethanol. 

In addition to experiments in naive mice, the effect of ethanol 

on methadone antinociception in methadone-tolerant mice was also ex­

amined (figure 22). In this experiment ethanol-treated mice had higher 

concentrations of methadone in the brain than controls, although the 

observed increase in antinociceptive effect was still greater than would 

be expected solely from the increase in brain methadone (table 14). 

Since ethanol produced significant alterations in the brain concentra­

tion of methadone in both naive and tolerant mice, it was desirable to 

compare the degree of potentiation after removing the influence of al­

terations in brain concentrations of methadone. This was accomplished 

by integrating the areas under the brain-level curve vs. time and the 

antinociceptive-response curve�- time. The ratio of antinociceptive 

area/brain-level area was called the Effect. Then the Effect in mice 

pretreated with 2.5 g/kg ethanol was divided by the Effect in mice pre­

treated with water. 
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Effect 
ETOH 

Effect 
H20 

Naive, s.c. 
(figure 8) 

2.7 

Naive, p.o. 
(figure 12) 

2.5 

110 

Tolerant, p.o. 
(figure 22) 

2.7 

Thus, when corrected for differences in brain level, ethanol increased 

the antinociceptive effect of methadone to a similar extent in both 

naive and tolerant mice. 

The antinociceptive effect of ethan61 and methadone combinations 

is greater than would be expected from simple addition of the observed 

antinociceptive effects of each drug given alone. For example, the ED50 

of methadone at 15 minutes is 2.0 mg/kg (figure 5). Addition of the 

observed effect of 4.0 g/kg ethanol when administered alone (13% MPE, 

table 2) would result in a decrease in the Eo50 of methadone to 1.4 

mg/kg. However, the ED50 of methadone in mice pretreated with 4.0 g/kg 

ethanol is 0.2 mg/kg. Similar observations can be made based on the ob-

served results in the other dose-response curves as well as the various 

time-course experiments. Since the combination of ethanol and metha­

done produced an antinociceptive effect greater than the sum of the 

effects of ethanol and methadone administered individually, it is ap-

propriate to classify the interaction of these two agents as Gne of po­

tentiation. This potentiation could be the result of a number of fac-

tors. 

Just as there are doses of methadone that would produce a degree 

of antinociception below the sensitivity of the tail-flick, there are 

doses of ethanol which would also produce a degree of antinociception 

not detectable with the tail-flick. In view of the activity of doses 
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of ethanol as low as 1.0 g/kg in some antinociceptive tests such as 

electrical stimulation of the tail (22), it is possible that 4.0 or even 

2.5 g/kg ethanol exerts an antinociceptive effect which is below the 

sensitivity of the tail-flick, but when combined with methadone, be-

comes evident as a shift of the methadone dose-response curve to the left. 

It is impossible to verify the existence of, let alone measure, this 

subthreshold effect in the tail-flick by its very definition. However, 

it is possible to estimate its maximum magnitude in order to see if the 

potentiation of ethanol and methadone antinociception could be due to 

addition of a subthreshold effect of ethanol to the expected antinoci­

ceptive response of methadone. 

If there is a subthreshold effect then it is implied that zero 

activity in the tail-flick test is above zero antinociception. The 

question then becomes; how far are they separated? If the observed 

effect of 4.0 g/kg ethanol (13% MPE) is just at, or even slightly above, 

the tail-flick threshold, then it is possible to answer this question 

by determination of the amount of methadone required to equal this re­

sponse. 

Since unclosed animals would not display any methadone antinoci­

ception, that is O ng/g = zero antinociception, and from figure 7, 13% 

MPE would be produced in control animals by a dose of methadone which 

yielded a brain concentration of methadone of 130 ng/g, the maximum 

magnitude of the difference in brain-methadone concentration between 

zero antinociception and the tail-flick threshold is approximately 

130 ng/g. Thus, if the decrease in the Ec50 in ethanol-treated mice 

was due to a subthreshold effect of ethanol the maximum it could be 
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decreased by is 130 ng/g. Comparison of the contro1 EC50 
after sub­

traction of this maximum possib1e subthreshold effect with the Ec50 
of 

methadone in mice pretreated with 4.0 g/kg ethano1 reveals that there 

is sti11 a significant difference between the two groups. This indi­

cates that ethanol has an effect greater than could be produced by simple 

addition ·of a possib1e subthreshold effect of ethanol to the antino­

ciceptive properties of methadone. 

The findings that ethanol treated animals disp1ay a greater anti­

nociceptive response than controls at the same or even lower whole 

brain concentrations of methadone, and that this increased response is 

not due to addition of subthreshold antinociceptive effects of ethanol 

suggests that the observed potentiation is the result of an ethanol­

mediated increase in the apparent CNS sensitivity to methadone. This 

apparent increase in sensitivity may be due to a number of factors. 

Ethano1 may increase the effective concentration of methadone at 

the opiate receptor without necessarily altering the antinociceptive 

response produced by methadone's interaction with the receptor. Since 

the distribution of stereospecific opiate binding is not uniform 

throughout the CNS (85) and it has been shown that the distribution of 

methadone is not uniform within the brain (122), it is possible that 

ethanol alters the distribution of methadone within the brain and in­

creases the amount of methadone at these receptors without altering 

who1e brain 1evels. As opiate binding is predominantly associated with 

the membrane fraction of brain (120) and ethano1 has been shown to in­

crease the f1uidity of synaptosomal membranes from the brain (29), it 

is possible ethanol may enhance the availability of the opiate receptor 
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for interaction with methadone. 

Since the pKa of all narcotics is above 7.4, the active form of 

narcotics is thought to be protonated (25). Recent quantum chemical 

studies of methadone confirm earlier findings that the lowest energy 

form of protonated methadone is a folded configuration with a hydrogen 

bond-r.ike interaction of the carbonyl oxygen with the protonated amine 

to form a pseudopiperidine ring. However, this most stable configura­

tion does not overlap very well with the structure of morphine. A more 

morphine-like structure, and one which would presumably have a ·higher 

affinity for the opiate receptor is an extended chain configuration (95). 

Since ethanol possesses both good hydrogen bonding capabilities and lip­

id solubility, it is possible ethanol could favor the formation of this 

more active conformation of methadone at the receptor and thereby in­

crease the activity of methadone. 

Increased levels of calcium have been shown to decrease stereo­

specific binding of opiates � vitro (121). In agreement with this 

finding, intraventricular calcium decreases and intraventricular EGTA 

increases the potency of morphine (63). The demonstration that ethanol 

produces a rapid and dose-related decrease in brain concentrations of 

calcium (131, 132) suggests that ethanol may potentiate methadone anti­

nociception by depletion of regional brain calcium. 

Finally, as recently reviewed by Takemori (156) increases in the 

turn-over or concentration of various neurotransmitters such as sero-

tonin, acetylcholine and dopamine have been shown to increase opiate 

antinociception. Although the results of different studies of the 

effects of ethanol on these neurotransmitters are far from uniform (78), 



www.manaraa.com

114 

owing in part to different doses of ethanol, different species and dif­

ferent methods of analysis, ethanol has been shown to produce increased 

whole brain levels of all three neurotransmitters in female ICR mice (49). 

Thus, it is possible that the ethanol potentiation of methadone anti­

nociception observed in the present study is mediated by alterations 

in one or all of these neurotransmitters. 

Although none of the above mentioned mechanisms for an ethanol­

mediated increase in the CNS sensitivity to methadone antinociception 

have been specifically investigated in the present study, the data 

presented are consistent with this hypothesis. The fact that ethanol 

produces a parallel shift in the dose-response curves to methadone sug­

gests that methadone is exerting its antinociceptive effect through 

the same type of receptors in both control and ethanol-treated mice. 

In addition, as shown·in figure 17, increasing doses of naloxone pro­

duced equal antagonism of both methadone, and ethanol-methadone antino­

ciception which provides a preliminary indication that ethanol did not 

alter the naloxone-receptor interaction which in turn implies that 

ethanol did not alter the configuration of the receptor. However, to 

validate this it would be necessary to determine the apparent pA2 of 

naloxone (147) in both ethanol and water-treated mice. 

Further support for the hypothesis that the potentiation between 

ethanol and methadone is due to a change in CNS sensitivity is provided 

by consideration of some other possible mechanisms of increased antino­

ciception. For example, tetrahydropapaveroline alkaloids or salsolinol 

have not been demonstrated i!1_ vivo after a single dose of ethanol with­

out prior treatment with dopa (161). However, since methadone blocks 
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dopamine receptors (137) and causes an increase in central dopamine syn­

thesis (19), the formation of these alkaloids may be favored when etha­

nol and methadone are coadministered. Evidence of antinociceptive ac­

tivity of both 3-carboxysalsolinol (102) and a derivative of tetrahydro­

papaverol ine (136) supports the possibility that some of the increased 

antinociception of ethanol and methadone combinations is due to the for­

mation of these alkaloids. However, since the observed potentiation 

is dependent upon the dose of ethanol and the brain level of acetalde­

hyde would be the same at different brain concentrations of ethanol 

(155), these condensation products are probably not involved in the po­

tentiation. 

Since high brain concentrations of ethanol increase tail-flick 

latency, it is possible that the increase in antinociception produced 

by combinations of ethanol and methadone is due to a methadone-mediated 

increase in ethanol levels. However, as shown in tables 2 and 10, for 

subcutaneously administered methadone and in figure 14 for orally admi­

nistered methadone, methadone does not significantly increase whole 

brain concentrations of ethanol under conditions where ethanol and metha­

done produce greater antinociception than methadone alone. 

Increased production of active metabolites of cl-methadone under 

the influence of ethanol could also explain the increased activity of 

ethanol and methadone combinations, but as shown in figure 16, ethanol 

also potentiates }_-methadone, which has no known metabolites with anti­

nociceptive activity (152). 

Thus, when all the data are considered, the most reasonable expla­

nation of the ethanol potentiation of methadone antinociception is an 
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ethanol-mediated change in the CNS sensitivity to methadone's antinoci-

ceptive properties. 

B) Effect of Ethanol on Brain Concentration of Methadone and Effect of 
Methadone on Brain Concentration of Ethanol 

The present study has investigated the absorption and distribu­

tion of methadone in mice and the ability of ethanol to alter these 

processes, especially as they are reflected in alterations of brain con­

centrations of methadone. It was found that the brain to serum ratio of 

methadone in control mice at both a constant time after subcutaneous 

administration of various doses of methadone (tables 3 and 6) as well 

as at various times after a single dose of methadone (table 4) was very 

close to unity. These data are in agreement with the results of a 

recent study of methadone distribution in mice (141) and contrast with 

the generally higher brain to serum ratio of methadone found in rats 

(94, 108). 

Pretreatment of mice with 2.5 g/kg ethanol produced brain concen-

trations of methadone consistently lower than control mice when exam­

ined 15 minutes after subcutaneous administration of methadone (table 

3). Ethanol pretreatment did not alter the brain/serum ratio of metha­

done since the lesser brain concentrations of methadone were paralleled 

by lesser serum concentrations of methadone. When the concentrations 

of methadone in liver, lung, brain and serum were examined at various 

times after a subcutaneous dose of methadone (table 4) it was again 

found that ethanol_ pretreatment decreased brain and serum methadone at 

every time point studied. In addition, as shown in table 5, ethanol 
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pretreatment also produced significant increases in the liver/serum and 

lung/serum ratios of methadone concentration. The decline in brain and 

serum methadone can not be explained by decreased absorption since it 

was found that the absorption of methadone from the subcutaneous injec­

tion site was both rapid and unaffected by ethanol pretreatment. 

The magnitude of the decrease in brain concentration of methadone 

was the same after pretreatment with either 2.5 g/kg or 4.0 g/kg etha­

nol. This raised the possibility that the decreased brain level was 

caused by acetaldehyde. Mccloy et.!}_. (96) have shown, for example, 

that intra-arterial injection of acetaldehyde dilates vascular beds in 

the hepatic artery, while constricting those in the carotid and femoral 

arteries. In addition, intravenous ethanol has been shown to increase 

heart rate, systemic arterial pressure and myocardial contractile force 

in dogs (llO). \•Jhil e ·these effects may be responsible for increases 

in peripheral tissue levels of methadone which could contribute to de­

creases in brain and serum concentrations of methadone, the observed 

redistribution of methadone may not be the only factor involved. 

As shown in figures 9 and 10 and table 6, when ethanol was admin­

istered after, or even simultaneously with the subcutaneous administra­

tion of methadone, the brain concentrations of methadone in both etha­

nol-treated and control mice were generally equal. This study has shown 

that ethanol is rapidly absorbed after oral administration to mice de­

proved of food as evidenced by a brain concentration of ethanol of 159 

mg/100 g 15 minutes post-administration. Since ethanol metabolism 

would immediately produce acetaldehyde, if ethanol-mediated redistribu­

tion of methadone was the underlying cause of alterations in brain and 
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serum methadone, these alterations would be expected to be similar whether 

ethanol was administered simultaneously with, or administered prior to, 

methadone. 

While the response to acetaldehyde is immediate, other effects of 

ethanol are more delayed. For example, ethanol produces a marked diu­

retic response due to its ability to suppress antidiuretic hormone re­

lease (162). However, the diuresis is short lived and is followed by 

a period of decreased urine formation (106). Thus, pretreatment with 

ethanol may produce a diuretic response at the same time methadone is 

being rapidly absorbed and serum concentrations of methadone are high and 

thereby increase the initial excretion of methadone. The effect of etha­

nol on excretion may be magnified since methadone decreases urine for­

mation (72) and control mice may be producing a lower than normal urine 

volume at the same time ethanol-treated mice are producing a greater 

than normal urine flow. When ethanol and methadone are administered 

simultaneously, the diuretic effect may only develop after serum con­

centrations of methadone are much lower and therefore the increased 

urine volume is less effective in producing noticeable changes in brain 

and serum concentrations of methadone. The fact that the effects of 

2.5 and 4.0 g/kg ethanol are similar may indicate that 2.5 g/kg maxi­

mally inhibits antidiuretic hormone release (34). Further study of the 

effects of ethanol and methadone combinations on urine formation and 

the excretion of methadone are needed to clarify the role of excretion 

in the observed decrease of brain concentrations of methadone. 

When ethanol and methadone are administered orally, initial brain 

concentrations of methadone are approximately 40% less than in control 
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mice (figure 12). This decrease is probably due to the same effects 

noted following subcutaneous administration as well as an additional 

effect of ethanol to initially decrease absorption of methadone from the 

gastrointestinal tract. As shown in table 8, both 2.4 and 4.0 g/kg 

ethanol delay the loss of methadone from the stomach to a similar ex­

tent. Studies of the oral absorption of methadone in rats with or with­

out a pyloric ligation show that although some methadone is absorbed 

from the stomach, the greater portion is absorbed from the small intes­

tine which makes gastric emptying the rate-limiting step in the oral ab­

sorption of methadone (170). Since ethanol is known to inhibit gastric 

emptying when administered by either the oral (8) or intravenous (59) 

route but does not alter absorption of methadone once methadone is in 

the duodenum (170), the ethanol-mediated initial decrease in gastroin­

testinal absorption of· methadone is evidently produced by delayed entry 

of methadone into the small intestine. Thus ethanol, by decreasing 

gastric emptying prevents the rapid absorption of methadone seen in 

controls and produces a more gradual and sustained absorption of metha­

�one which results in brain concentrations of methadone initially lower 

and finally greater than controls. As can be seen in figure 12, both 

4.0 and 2.5 g/kg ethanol produced the same effects on brain concentra­

tion of methadone. This is probably due to the use of the same concentra­

tion of ethanol to dose both groups and as mentioned above, both doses 

produce similar effects on the distribution and excretion of methadone 

once it is absorbed. 

As shown in figure 15, the half-life of methadone in the brain 

after subcutaneous administration was not altered by pretreatment with 
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2.5 g/kg ethanol. When considered in conjunction with the lack of effect 

of ethanol treatment on the relative amounts of methadone, EDDP, and 

EMDP excreted in bile and urine, these observations suggest that this 

dose of ethanol does not significantly alter .ill. vivo metabolism of metha­

done. Surplementary information on the effect of ethanol on methadone 

metabolism .ill. vitro is lacking although Cohen and Mannering (35) found 

ethanol did not alter N-demethylation of methadone at concentrations 

which decreased aniline para-hydroxylation. However, since ethanol is 

a more potent inhibitor of the metabolism of type II compounds (ani­

line) than of type I compounds (methadone) and they did not investigate 

higher concentrations of ethanol, their investigation does not neces­

sarily support the concept that ethanol does not alter methadone meta­

bolism in vivo. 

It is possible that the lack of effect of ethanol on the half-life 

of methadone in brain reflects an ethanol-mediated inhibition of metha­

done metabolism which is masked in the whole animal by other effects of 

ethanol. For example, the observed increased concentration of metha­

done in the liver of ethanol-treated mice may compensate for an ethanol­

mediated inhibition of methadone metabolism. In mice maintained on an 

oral dose of methadone of 20 mg/kg/day, the oral administration of etha­

nol (2.5 g/kg) prior to the last dose produced an increase in the half-

1 ife of methadone in brain compared to controls (figure 23). However, 

this alteration in half-life may not be due to an ethanol inhibition of 

methadone metabolism but due to an initial delay in methadone absorption 

as was shown in naive mice deprived of food. To circumvent this pos­

sibility, it would be useful to study the effects of ethanol in mice 
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made tolerant to methadone by subcutaneous administration. In addi­

tion, further work on the j__Q. vitro metabolism of methadone in both naive 

and methadone-tolerant mice is needed to clarify the effects of ethanol 

on methadone metabolism. 

In contrast to the significant effects of ethanol on brain concen­

trations of methadone, especially when both drugs are administered 

orally, methadone generally produced only slight alterations in brain 

concentrations of ethanol. In fact, as shown in figure 14, the only 

significant change produced by a 30 minute oral pretreatment with metha­

done was a lower brain concentration of ethanol 15 minutes post ethanol. 

There is also some indication of a delay in the time of peak concen­

trations of ethanol, however, the rate of decline in brain concentra­

tions of ethanol is little affected by methadone. As shown in tables 

2 and 10, subcutaneous administration of methadone also has little ef­

fect on the brain concentrations of ethanol. The alterations observed 

are probably a reflection of the anticholinergic properties of metha­

done (171) which would delay gastric emptying in agreement with the 

effects of other drugs with anticholinergic properties on ethanol ab­

sorption (41, 54, 60). Since ethanol is well absorbed from the stomach 

even when the stomach is ligated at the pylorus (79), it is to be ex­

pected that alterations in the rate of gastric emptying have a greater 

effect on methadone absorption than on ethanol absorption. 



www.manaraa.com

C) Toxicity of Ethanol and Methadone Combinations 

122 

In view of the common CNS depressant properties of ethanol and 

methadone, it would not be surprising to find an increase in the toxi­

city of methadone when combined with ethanol. However, as shown in fig­

ure 24, pretreatment with ethanol did not significantly alter the ob­

served LD50 of orally administered methadone until an ethanol dose of 

4.0 g/kg was employed. It would seem likely that ethanol would alter 

the absorption of lethal doses of methadone in a fashion similar to 

pharmacological doses, and therefore insight into the effects of ethanol 

on the LD50 of methadone could be gained by referring to the effects 

of ethanol pretreatment upon brain concentrations of methadone shovm in 

figure 12. Control animals rapidly achieved high brain concentrations 

of methadone, while ethanol pretreatment suppressed this initial rapid 

absorption and produced a more gradual increase in brain concentra­

tions of methadone. Thus, even at the same dose of methadone, the maxi­

mum brain concentration of methadone achieved by ethanol-pretreated mice 

is much lower than the maximum achieved by controls. Due to these etha­

nol-mediated alterations in brain concentration of methadone, the in­

creased toxicity of ethanol and methadone combinations is see� not as 

a shift in the LD50, but as a significantly lower concentration of metha­

done in the brain at death as shown in table 16. 

The ability of ethanol to alter brain concentration of methadone 

may also be partly responsible for the observed increased latency of 

death in ethanol-pretreated mice. Since ethanol delays the increase in 

brain concentration of methadone, ethanol-pretreated mice require a 
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longer time to achieve a lethal concentration of methadone even though 

this concentration is less than in control mice. Since the effects 

of 4.0 and 2.5 g/kg ethanol on the time course of brain concentration 

of methadone are similar, but the latency of death in mice pretreated 

with 4.0 g/kg is significantly greater than when mice are pretreated 

with 2.5 g/kg, ethanol may increase the latency of death by other mecha­

nisms in addition to initially decreasing brain concentrations of metha­

done. For example, in addition to CNS depression, methadone dispiays 

some CNS stimulant properties in mice as evidenced by its ability to 

increase locomotor activity (figure 19). During the Lo50 experiment, 

it was observed that ethanol-pretreated mice did not seem to exhibit 

as much locomotor activity as control mice. Thus, ethanol may have in­

creased the latency of death by initially protecting the mice from the 

stimulant properties of methadone. 

Since mice pretreated with 2.5 g/kg ethanol did survive slightly 

longer than controls, the decreased brain concentration of methadone at 

death may not necessarily reflect an initial delay in methadone delivery 

to the brain, but could be due to the longer time the animal was alive 

and metabolizing methadone. To evaluate this possibility methadone was 

administered subcutaneously. Under these conditions both ethanol-treated 

and control mice died at approximately the s,me time. As shown in table 

16, the brain concentrations of methadone in the mice that died in the 

ethanol pretreated group was still significantly lower than in the con­

trols. 

These experiments indicate that it took a lower brain concentra­

tion of methadone to be lethal in mice pretreated with ethanol, but 
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since ethanol also decreased the percent of the dose which reached the 

brain, the Lo50 was not altered until higher doses of ethanol were em­

ployed. Thus, although 2.5 g/kg ethanol increased the antinociceptive 

response to such an extent that the dose-response curve was shifted to 

the left in spite of a lower brain concentration of methadone, this same 

dose of ethanol did not increase the toxic effects of methadone enough 

to overcome the decrease in brain concentration. 

It was observed that combination of a 2.5 g/kg dose of ethanol with 

the daily dose of methadone in mice maintained on 100 mg/kg/day produced 

as many deaths as were produced by doubling the daily dose of methadone. 

Further investigation of the Lo
50 of ethanol in methadone tolerant mice 

(table 17) revealed that, as might be expected, the higher the mainte­

nance dose of methadone, the lower the LD50 of ethanol. These findings 

may parallel the methadone maintenance patient who combines ethanol and 

his daily methadone dose and succumbs to their combined effect when the 

daily dose of methadone alone would have been tolerated. 
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SUMMARY 

Ethanol causes a significant potentiation of the antinociceptive 

properties of methadone in both naive and methadone-tolerant mice as 

measured in the tail-flick procedure. This increased antinociception 

is not due to an ethanol-mediated increase in whole brain concentration 

of methadone. Ethanol pretreatment was found to cause a significant 

decline in whole brain concentrations of methadone. It is hypothesized 

that the increased antinociceptive response to combinations of ethanol 

and methadone is the result of an ethanol-mediated increase in central 

nervous system sensitivity to methadone. 

Ethanol treatment does not alter the half-life of methadone in the 

brain, nor does it alter the relative amounts of methadone and its major 

nonconjugated metabolites excreted in the bile or urine of naive mice. 

Ethanol pretreated mice die at a lower brain concentration of metha­

done than mice that die as a result of methadone alone. However, since 

ethanol also alters the percent of the methadone dose which reaches the 

brain, the LD50 of methadone is not altered by pretreatment with an 

ethanol dose of 2.5 g/kg. In mice maintained on high daily doses of 

methadone, there is a decline in the LD50 of ethanol. 
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APPENDIX I 

Determination of Methadone Concentration In Brain 

In addition to the 3H and GLC determinations of methadone in 

brain presented in figures 2 & 3 respectively, a combined GLC/3H 

assay was employed in order to check the accuracy of brain-methadone 

determinations based on the 3H-label. This procedure was identical 

to the GLC assay except prornethazine was used as an internal standard 

instead of SKF-525A and the initial solvent extract was split. A 

5 ml aliquot was evaporated and counted to determine the apparent 

amount of 3H-methadone. This was corrected for 3H-methadone meta­

bolites by using the appropriate factor derived from previous 

experiments. The remaining solvent was back extracted with HzS04 

and processed as in the GLC procedure. In this way, brain levels 

based on GLC and on analysis of the 3H-label could be determined in 

the same sample. Since promethazine decomposes to phenothiazine, it 

was necessary to purify the stock internal standard solution each day 

before use. This was accomplished by TLC separation (154). The 

promethazine was extracted from the silica gel with a small amount 

of ethanol and then diluted to the appropriate concentration with 

water. The GLC results from two brain samples were confirmed by 

GC/MS as described in methods. The average ratio of GC-MS/GC levels 

was 0.93. 

Using this 3H/GLC procedure, the brain concentrations of methadone 

· were determined in mice administered either water or 2.5 g/kg ethanol 
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Ethanol (2.5 g/kg, p.o.) or water was administered 30 minutes 
prior to methadone (8 mg/kg, p.a.). Each point represents the 
mean + SEM of six mice. Brains were pooled in groups of three 
to determine methadone by GLC. 
* significantly different from control at P <.05 
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thirty minutes prior to oral administration of methadone (8. mg/kg). 

This dosing protocol was identical to that used in figure 12. In 

this duplicate experiment the GLC brain methadone levels (figure 27) 

showed that water-pretreated mice exhibited a rapid absorption of 

methadone peaking at thirty minutes while ethanol-pretreated mice 

showed a delayed absorption with brain methadone levels initially 

lower and finally greater than control. These results confirm the 

time course of brain methadone levels based on 3H-analysis found in 

142 

the previous set of animals (figure 12). In addition, the 3H-methadone 

concentrations from the combined 3H/GLC procedure indicated exactly 

the same trend. It 1�as observed, however, that the absolute magnitude 

of the 3H-methadone concentrations tended to be lower than the concen-

trations calculated on the basis of the GLC assay. 

To investigate the magnitude and mechanism of this difference, in 

addition to comparison of brain methadone levels from the two assays, 

the specific activity of the methadone recovered from the brains was 

also determined. The calculation of this final specific activity was 

accomplished by determination of the number of nanograms of methadone in 

identical aliquots of the final extract by both GLC and scintillation 

counting. In both cases, the samples were compared to known aliquots of 
3H-methadone from the injection solution on the basis of absolute metha­

done peak height or DPM . .  The remaining extract was analyzed by TLC to 

obtain the correction factor for total DPM to methadone DPM. Since the 

GLC detennination of absolute nanograms of methadone relies on the abso­

lute peak height of methadone and it was found that a small amount of 

promethaz1ne decomposes to phenothiazine during the process of 
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extraction, and further, that phenothiazine elutes very close to 

methadone, the internal standard for this and all subsequent GLC 

analyses was changed to SKF-525A. 
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Although this made the determination of specific activity more 

accurate, it was found that SKF-525A is extracted approximately half 

as efficiently from mouse brains homogenates as it is from human 

brain homogenates although methadone is extracted equally well from 

both. The same type of problem has been noted by at least one other 

worker (23) who found the extraction of methadone to be equally 

efficient in all tissues studied but also noted that SKF-525A 

extracted with a different efficiency in each type of tissue studied 

(brain, liver, lung, spleen, kidney). Due to this difference in 

the extraction of SKF-525A, at least one standard prepared in mouse­

brain homogenates was.coextracted with each group of samples and 

human-brain standards. The standard curve established with human­

brain standards was corrected for the difference in extraction of the 

internal standard by the mouse-brain standards. This difference was 

very reproduceable from day to day. The average ratio of peak height 

ratios (methadone/SKF-525A) between mouse and human brain standards 

was 2.06 + .07 based on five standards over a three week peri6d. 

Table 19 presents the alterations in specific activity as well 

as the 3H/GLC results from the analysis of brains from mice pretreated 

with ethanol or water thirty minutes prior to the oral administration 

of methadone (8 mg/kg). These results confirm the reality of the 

difference between 3H and GLC methadone concentrations and show that 

the observed differences in 3H and GLC concentrations are caused by a 
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TABLE 19 

TIME COURSE OF ALTERATIONS IN SPECIFIC ACTIVITY 

Minutes post Specific activity 3
H/GLC 

methadone 
(Pretreatment) 

30, (water) o.ao + .os 0.78 + .09 

30, (ethanol) 0.83 + .08 0.81 + .05 

90, (water) 0.68 + .10 0.71 + .06 

90, (ethanol) 0.74 � .06 0.75 + .07 

There v1ere three samples /dose with two mouse brains/sample. Mice 
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were pretreated with either water or ethanol(2.5g/kg, p.a.) 30 minutes 

prior to recieving 3H-l-methadone diluted with unlabelled &,l methadone 

( 8 mg/kg, p.o.). 
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decrease in the specific activity of methadone and were not 

due to improper application or calibration of either analytical 

method. In addition, these results demonstrate that the magni.tude 

of the decrease-thirty minutes post administration was almost the 

same as at ninety minutes and was not altered by pretreatment with 

ethanol. 

Since all the radiolabled methadone was l which had been 

diluted with unlabled _c!,_J_-methadone, one of the reasons for the 

decreased specific activity could be stereoselective·metabolism 

of methadone or a more rapid metabolism of _l-methadone than!!­

methadone. Although Sung and Way (153) found that each enantiomer 

of methadone had the same brain half-life, other workers (15, 107, 

157) showed that the metabolism of _c!-methadone is faster than l, 

which would, if anYthing, tend to increase the specific activity. 

These studies were all done with each enantiomer separately and, 
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as shown by Taylor (157), when the racemic mixture was studied, the meta­

bolism of 1-methadone was favored over that of d-methadone. Beckett 

(15) suggested that this could be explained by _l-methadone possessing 

a higher affinity for the metabolizing enzyme but a slower matabolic 

rate than _c!-methadone. If this is true, l-methadone would inhibit the 

metabolism of _c!-methadone and this would tend to decrease the specific 

activity of 3H-_J_-methadone diluted with _c!,_l-methadone. 

Table 20 shows that when 3H-_J_-methadone diluted with _c!,l­

methadone was administered subcutaneously rather than orally, there 

was no alteration in the specific activity, and there was a very 

close agreement between 3H and GLC methadone concentrations. This 

tends to discount the importance of stereoselective metabolism as 
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TABLE 20 

CHANGES IN SPECIFIC ACTIVITY OF 3H-METHAD0NE 

Ratio of final/initial 
3
H brain level 

ecific activit GLC brain 1 evel 
.9.,l �lethadone 

s.c. 1.02 + .05 o. 97 + .05 

p.o. 0. 71 ±. .08 0.73 + .05 

Methadone 

s.c. 1.03 + . 07 1. 06 + . 03 

p. 0. 0.78 + .05 0.70 + .07 

Specific activity and brain methadone 1 eve 1 s v1ere determined 
90 minutes after methadone was administered ( 8 mg/kg p.o. or 
2 mg/ kg S. C. ) • 
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the cause of the decreased specific activity seen after oral 

administration. In addition, as also shown in table 26, when 
3tt-l-methadone was diluted with unlabeled l-methadone the specific 

activity still decreased after oral but not after subcutaneous 

administration, further indicating a mechanism other than stereo-

selective metabolism. The data that indicate no alteration in 

the specific activity of 3tt-l- methadone diluted with unlabeled 

1,1-methadone are in agreement with the results of Alvares and 

Kappas (3) and Sullivan et�. who found no difference in the i.!!. 
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vitro rate of metabolism of methadone isomers in rat liver.microsomes 

(l 51). 

It is possible that there is an irreversable stereoselective 

binding of methadone to the "narcotic receptor" or other brain con-

stituents which favors l-methadone and thus decreases the specific 

activity of recovered methadone. The decreased specific activity after 

oral administration of 3H-l-methadone diluted with l- methadone and 

the lack ·of alteration of specific activity of 3tt-l-methadone diluted 

with 1,l-methadone after subcutaneous administration discounts stereo­

selective binding as a reason for decrease in specific activity . 

. The most likely explanation for the observed alterations in specific 

activity is exchange of the 3tt-labe1 with water. This exchange could 

conceivably occur during the extraction of the samples but since the 

specific activity of the standards which were processed in parallel 

with the samples was unaltered, this does not seem likely. To deter­

mine if the exchange was taking place during storage or homogenization 

of the brains, aliquots of an injection solution were injected fnto 
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several sites of four blank mouse brains such that each brain received 

10 µl of solution. The brains were then frozen and two were analyzed 

after two days of storage. the remaining two were analyzed after ten 

days of storage. In both cases the specific activity of methadone 

was found to be unaltered. In addition, since all brain samples 

were stored, homog·enized and extracted in the same manner but alter­

ations of specific activity were only observed in mice dosed orally, 

these procedures cannot be the source of the exchange. In view of 

the alteration in specffic activity following oral but not subcutaneous 

administration, the exchange with water is probably occuring in the 

gastrointestinal tract. 

Evaluation of the exchange of 3H-methadone 1vas monitored by 

measuring the amount of 3H which was extracted by EDC/isopropanol before 

and after in cub a ti on in �,ater. Incubation of 3H-methactone in water at 

35°c resulted in a 5% decrease in extractable radioactivity after 30 

minutes but no further decrease in the next 24 hours. Incubation at 

pH 7.4 and 35°c did not result in any measurable decline in 24 hours. 

Information from the manufacturer of the 3H-methadone used (113) 

indicated that approximately 5% of the 3H-lable is not in the l posi­

tion. Since the 3H-methadone is produced by reaction of 1-4-dimethyl­

amiAe-2,2-diphenylvaleronitrile with ethyl magnesium bro�ide (2-3H), 

it would seem likely that this 5% is in the 2 position next to the 

carbonyl group. This. position would be ve_ry labile and in fact exchange 

at this position of methadone has been observed (66). This type of 

exchange .could explain the observed� vitro decrease in extractable 
3H. However, in addition to instability in vitro, there .must be an 
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additional exchange iD.. vivo since the specific activity of 

recovered methadone is decreased by approximately 30%. Since the 

decrease of specific activity is not affected by pretreatment with 

ethanol (table 14) which causes a delay in the loss of methadone 

from the stomach (table 8) this additional exchange may occur in the 

small intestine. 

The data presented here suggest that following oral administration 

of 3H-methadone there is an exchange of the 3H-label which results in 

an approximate 30% decrease in specific activity. The same decrease 

in specific activity is not observed following subcutaneous administra­

tion. The decrease in specific activity is not affected by pretreat­

ment with ethanol and furthermore, the decrease at 30 minutes post 

methadone is almost the same as at 90 minutes. In experiments where 

both 3H and GLC methods were used to determine methadone concentration 

in the brain after oral administration it was found that each assay 

showed the same relative magnitude between ethanol and water pretreated 

animals and a similar time course of brain methadone levels. However, 

the absolute magnitude of the 3H-levels was lower due to the change 

in specific activity. Although it would have been valid to correct 

the 3H-methadone concentrations for alterations in specific �ctivity 

and report these results as ng of methadone/g of brain, this was not 

done. Results based on 3H-ana1ysis after oral administration of metha­

done are reported as OPM/g. The results after subcutaneous administra­

tion are reported as ng methadone/g since no alteration of specific 

activity occured with this route of administration. 
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APPENDIX II 

The results of administration of ethanol 30 minutes prior to the 

subcutaneous administration of morphine, propoxyphene or meperidine 

are presented in figures 28, 29 and 30 respectively. This dosing pro­

tocol is identical to· that used for methadone in figure 8. Under 

these conditions, the brain concentration of methadone was decreased 

relative to control concentrations. 

If the factors which produced this decline in brain concentrations 

of methadone also decreased brain concentrations of these other narco-

tics to a similar degree, then the antinociceptive properties of these 

agents would also seem to be increased by ethanol pretreatment. If the 
I 

brain concentration of these agents was decreased to the same extent as 

methadone, these other·,narcotics would seem to be potentiated to a 

lesser degree than methadone in that ethanol increased methadone anti­

nociception to such an extent that even in the face of decreased brain 

concentrations of methadone, the ethanol and methadone antinociceptive 

response was greater than control. Ethanol and these other narcotics 

generally produced antinociceptive responses equal to control responses. 

On the other hand, if ethanol pretreatment does not alter the 

brain concentration of these agents, then it would seem that ethanol is 

unable to increase the antinociceptive properties of these narcotics. 

Further investigation of the combined effects of ethanol and these 

narcotics is needed to differentiate between these possibilities. 



www.manaraa.com

... 

(.) 
QJ 

'+­
'+­
UJ 

100 

80 

i!2 60 
.0 

·� 
0 

Cl. 

E 
:::J 

E 
·x 

� 40 

#-

20 

FIGURE 28 

THE EFFECT OF ETHANOL ON THE TIME COURSE OF THE 

30 

TAIL-FLICK ACTIVITY OF MORPHINE 

60 

•-.. Control, 5mg/kg 
....... Ethanol+5mg/kg 
•-•control, 2.5mg/kg 
Jii:---.6. Ethano1+2.5mg/kg 

90 120 

Minutes Post Morphine {s.c.) 
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150 

Ethanol (2.5 g/kg, p.o.) or water was administered 30 minutes 
prior to morphine. There were six mice/dose and each mouse 
was tested at the indicated times. The SEM shown are represen­
tative of the SEM at the other time points. 
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FIGURE 29 

THE EFFECT OF ETHANOL ON THE TIME COURSE OF THE 
TAIL-FLICK ACTIVITY OF PROPOXYPHENE 

•-.. Control 
ID--tl Ethanol 

30 60 90 120 

Minutes Post Propoxyphene (30 mg)<g s.c.) 
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Ethanol (2.5 g/kg, p.a.) or water was administered 30 minutes 
prior to propoxyphene. There were six mice/group. Mice tested 
at 60 minutes were retested at 120 minutes. Mice tested at 90 
minutes were retested at 135 minutes. The SEM shown are represen­
tative of the SEM in the other groups. 
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FIGURE 30 

THE EFFECT OF ETHANOL ON THE TIME COURSE OF THE 

TAIL-FLICK ACTIVITY OF MEPERIDINE 
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Etha no 1 ( 2. 5 g/ kg, p. o.) or water was administered 30 minutes 
prior to meperidine. There were six mice/dose and each mouse 
was tested at the indicated times. 
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